@article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} } @article{JiaAnitescuGhorashietal., author = {Jia, Yue and Anitescu, Cosmin and Ghorashi, Seyed Shahram and Rabczuk, Timon and Dias-da-Costa, D.}, title = {Extended Isogeometric Analysis for Material Interface Problems}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, abstract = {Extended Isogeometric Analysis for Material Interface Problems}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{MarzbanAlmasiSchwarz, author = {Marzban, Samira and Almasi, Ashkan and Schwarz, Jochen}, title = {REINFORCED CONCRETE STRUCTURAL WALL DATABASE DEVELOPMENT FOR MODEL VALIDATION}, doi = {10.25643/bauhaus-universitaet.2452}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150831-24523}, abstract = {Reinforced concrete walls are commonly selected as the lateral resisting systems in seismic design of buildings. The design procedure requires reliable/robust models to predict the wall response. Many researchers, thus, have focused on using the available experimental data to be able to comment on the quality of models at hand. What is missing though is an uncertain attitude towards the experimental data since such data can be affected by different sources of uncertainty. In this paper, we introduce the database created for model quality evaluation purposes considering the uncertainties in the experimental data. This is the first step of a larger study on experience-based model quality evaluation of reinforced concrete walls. Here, we briefly present the database as well as six sample validations of the developed numerical model (the quality of which is to be assessed). The database contains the information on nearly 300 wall specimens from about 50 sources. Both the database and the numerical model, built for uncertainty/sensitivity analysis purposes, are mainly based on ten parameters. These include geometry, material, reinforcement layout and loading properties. The validation results prove that the model is able to predict the wall response satisfactorily. Consequently, the validated numerical model could be used in further quality evaluation studies.}, subject = {Baustoff}, language = {en} } @article{LuuMartinezRodrigoZabeletal., author = {Luu, M. and Martinez-Rodrigo, M.D. and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {2421 -- 2442}, abstract = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, subject = {Angewandte Mathematik}, language = {en} }