@article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach}, series = {Structural and Multidisciplinary Optimization}, journal = {Structural and Multidisciplinary Optimization}, pages = {99 -- 112}, abstract = {Optimum _ber content and distribution in _ber-reinforced solids using a reliability and NURBS based sequential optimization approach}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiKerfridenBordasetal., author = {Ghasemi, Hamid and Kerfriden, Pierre and Bordas, St{\´e}phane Pierre Alain and Muthu, Jacob and Zi, Goangseup and Rabczuk, Timon}, title = {Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients}, series = {Composite Structures}, journal = {Composite Structures}, pages = {221 -- 230}, abstract = {Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients}, subject = {Angewandte Mathematik}, language = {en} } @article{GhorashiValizadehMohammadietal., author = {Ghorashi, Seyed Shahram and Valizadeh, Navid and Mohammadi, S. and Rabczuk, Timon}, title = {T-spline based XIGA for Fracture Analysis of Orthotropic Media}, series = {Computers \& Structures}, journal = {Computers \& Structures}, pages = {138 -- 146}, abstract = {T-spline based XIGA for Fracture Analysis of Orthotropic Media}, subject = {Angewandte Mathematik}, language = {en} } @article{HamdiaLahmerNguyenThoietal., author = {Hamdia, Khader and Lahmer, Tom and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {304 -- 313}, abstract = {Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS}, subject = {Angewandte Mathematik}, language = {en} } @article{IlyaniAkmarKramerRabczuk, author = {Ilyani Akmar, A.B. and Kramer, O. and Rabczuk, Timon}, title = {Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy}, series = {American Journal of Engineering and Applied Sciences}, journal = {American Journal of Engineering and Applied Sciences}, doi = {10.3844/ajeassp.2015.185.201}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31402}, pages = {185 -- 201}, abstract = {In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases.}, subject = {Optimierung}, language = {en} } @phdthesis{Jia, author = {Jia, Yue}, title = {Methods based on B-splines for model representation, numerical analysis and image registration}, doi = {10.25643/bauhaus-universitaet.2484}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20151210-24849}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {200}, abstract = {The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications. Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation. First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates. Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered. Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees. Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{JiaZhangRabczuk, author = {Jia, Yue and Zhang, Yongjie and Rabczuk, Timon}, title = {A Novel Dynamic Multilevel Technique for Image Registration}, series = {Computers and Mathematics with Applications}, journal = {Computers and Mathematics with Applications}, abstract = {A Novel Dynamic Multilevel Technique for Image Registration}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangRabczukPark, author = {Jiang, Jin-Wu and Rabczuk, Timon and Park, Harold S.}, title = {A Stillinger-Weber Potential for Single-Layer Black Phosphorus, and the Importance of Cross-Pucker Interactions for Negative Poisson's Ratio and Edge Stress-Induced Bending}, series = {Nanoscale}, journal = {Nanoscale}, doi = {10.1039/C4NR07341J}, abstract = {The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger-Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing its unique mechanical properties, such as a negative Poisson's ratio. In particular, we show that the cross-pucker interaction enables the pucker to act as a re-entrant hinge, which expands in the lateral direction when it is stretched in the longitudinal direction. As a consequence, single-layered black phosphorus has a negative Poisson's ratio in the direction perpendicular to the atomic plane. As an additional demonstration of the impact of the cross-pucker interaction, we show that it is also the key factor that enables capturing the edge stress-induced bending of single-layered black phosphorus that has been reported in ab initio calculations.}, subject = {Angewandte Mathematik}, language = {en} } @article{KumarSinghMishraetal., author = {Kumar, S. and Singh, I. and Mishra, B.K. and Rabczuk, Timon}, title = {Modeling and Simulation of Kinked Cracks by Virtual Node XFEM}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {1425 -- 1466}, abstract = {Modeling and Simulation of Kinked Cracks by Virtual Node XFEM}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerIlgLerch, author = {Lahmer, Tom and Ilg, J. and Lerch, Reinhard}, title = {Variance-based sensitivity analyses of piezoelectric models}, series = {Computer Modeling in Engineering \& Sciences}, journal = {Computer Modeling in Engineering \& Sciences}, pages = {105 -- 126}, abstract = {Variance-based sensitivity analyses of piezoelectric models}, subject = {Angewandte Mathematik}, language = {en} }