@article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Why twisting angles are diverse in graphene Moir'e patterns?}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Why twisting angles are diverse in graphene Moir'e patterns?}, subject = {Angewandte Mathematik}, language = {en} } @article{DoeringHoffmeyerSeegeretal., author = {D{\"o}ring, R. and Hoffmeyer, J. and Seeger, T. and Vormwald, Michael}, title = {Verformungsverhalten und rechnerische Absch{\"a}tzung der Erm{\"u}dungslebensdauer metallischer Werkstoffe unter mehrachsig nichtproportionaler Beanspruchung}, series = {Materialwissenschaft und Werkstofftechnik}, journal = {Materialwissenschaft und Werkstofftechnik}, pages = {280 -- 288}, abstract = {Verformungsverhalten und rechnerische Absch{\"a}tzung der Erm{\"u}dungslebensdauer metallischer Werkstoffe unter mehrachsig nichtproportionaler Beanspruchung}, subject = {Angewandte Mathematik}, language = {de} } @article{LahmerIlgLerch, author = {Lahmer, Tom and Ilg, J. and Lerch, Reinhard}, title = {Variance-based sensitivity analyses of piezoelectric models}, series = {Computer Modeling in Engineering \& Sciences}, journal = {Computer Modeling in Engineering \& Sciences}, pages = {105 -- 126}, abstract = {Variance-based sensitivity analyses of piezoelectric models}, subject = {Angewandte Mathematik}, language = {en} } @article{MeelSatirasetthaveeKanitpongetal., author = {Meel, Inder P. and Satirasetthavee, Dussadee and Kanitpong, Kunnawee and Taneerananon, Pichai}, title = {Using Czech TCT to Assess Safety Impact of Deceleration Lane at Thai U-turns}, series = {ENGINEERING JOURNAL-THAILAND}, journal = {ENGINEERING JOURNAL-THAILAND}, doi = {10.4186/ej.2016.20.1.121}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170406-31097}, pages = {121 -- 135}, abstract = {Purpose of this study is to evaluate safety impact of the deceleration lane at the Upstream Zone of at-grade U-turns on 4-lane divided Thai highways. A substantial speed reduction is required by vehicles for diverging and making U-turn, and the deceleration lanes are provided for this purpose. These lanes are also providing a storage space for the U-turning vehicles to avoid unnecessary blockage of through lanes and reduce the potential of rear-end collisions. The safety at the U-turn is greatly influenced by the proper or improper use of the deceleration lanes. Subject to their length, full or partial speed adjustment can occur within the deceleration lane also the road users' behavior is influenced. To assess the safety impact, the four groups of U-turns with the varying length of deceleration lanes were identified. Owing to limitation of availability and reliability of road crash data in Thailand, widely accepted Traffic Conflict Technique (TCT) was used as an alternative and proactive methodology. The U-turns' geometric data, traffic conflicts and volume data were recorded in the field at 8 locations, 8 hours per location. Severity Conflict Rate (SCR) was assessed by applying a weighing factor (based on the severity grades according to the Czech TCT) to the observed conflicts related to the conflicting traffic volumes. A comparative higher value of SCR represents a lower level of safety. According to the results, increase in the functional length of the deceleration lane yields a lower value of SCR and a higher level of the road safety.}, subject = {Verkehrssicherheit}, language = {en} } @article{IlyaniAkmarLahmerBordasetal., author = {Ilyani Akmar, A.B. and Lahmer, Tom and Bordas, St{\´e}phane Pierre Alain and Beex, L.A.A. and Rabczuk, Timon}, title = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, series = {Composite Structures}, journal = {Composite Structures}, doi = {10.1016/j.compstruct.2014.04.014}, pages = {1 -- 17}, abstract = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{GoebelLahmerOsburg, author = {G{\"o}bel, Luise and Lahmer, Tom and Osburg, Andrea}, title = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, series = {European Journal of Mechanics-A/Solids}, journal = {European Journal of Mechanics-A/Solids}, abstract = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiRafieeZhuangetal., author = {Ghasemi, Hamid and Rafiee, Roham and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {295 -- 305}, abstract = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{AlemuHabteLahmeretal., author = {Alemu, Yohannes L. and Habte, Bedilu and Lahmer, Tom and Urgessa, Girum}, title = {Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings}, series = {Asian Journal of Civil Engineering}, volume = {2023}, journal = {Asian Journal of Civil Engineering}, publisher = {Springer International Publishing}, address = {Cham}, doi = {10.1007/s42107-023-00640-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63677}, pages = {1 -- 11}, abstract = {As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes.}, subject = {Bodenmechanik}, language = {en} }