@phdthesis{AbuBakar, author = {Abu Bakar, Ilyani Akmar}, title = {Computational Analysis of Woven Fabric Composites: Single- and Multi-Objective Optimizations and Sensitivity Analysis in Meso-scale Structures}, issn = {1610-7381}, doi = {10.25643/bauhaus-universitaet.4176}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200605-41762}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {151}, abstract = {This study permits a reliability analysis to solve the mechanical behaviour issues existing in the current structural design of fabric structures. Purely predictive material models are highly desirable to facilitate an optimized design scheme and to significantly reduce time and cost at the design stage, such as experimental characterization. The present study examined the role of three major tasks; a) single-objective optimization, b) sensitivity analyses and c) multi-objective optimization on proposed weave structures for woven fabric composites. For single-objective optimization task, the first goal is to optimize the elastic properties of proposed complex weave structure under unit cells basis based on periodic boundary conditions. We predict the geometric characteristics towards skewness of woven fabric composites via Evolutionary Algorithm (EA) and a parametric study. We also demonstrate the effect of complex weave structures on the fray tendency in woven fabric composites via tightness evaluation. We utilize a procedure which does not require a numerical averaging process for evaluating the elastic properties of woven fabric composites. The fray tendency and skewness of woven fabrics depends upon the behaviour of the floats which is related to the factor of weave. Results of this study may suggest a broader view for further research into the effects of complex weave structures or may provide an alternative to the fray and skewness problems of current weave structure in woven fabric composites. A comprehensive study is developed on the complex weave structure model which adopts the dry woven fabric of the most potential pattern in singleobjective optimization incorporating the uncertainties parameters of woven fabric composites. The comprehensive study covers the regression-based and variance-based sensitivity analyses. The second task goal is to introduce the fabric uncertainties parameters and elaborate how they can be incorporated into finite element models on macroscopic material parameters such as elastic modulus and shear modulus of dry woven fabric subjected to uni-axial and biaxial deformations. Significant correlations in the study, would indicate the need for a thorough investigation of woven fabric composites under uncertainties parameters. The study describes here could serve as an alternative to identify effective material properties without prolonged time consumption and expensive experimental tests. The last part focuses on a hierarchical stochastic multi-scale optimization approach (fine-scale and coarse-scale optimizations) under geometrical uncertainties parameters for hybrid composites considering complex weave structure. The fine-scale optimization is to determine the best lamina pattern that maximizes its macroscopic elastic properties, conducted by EA under the following uncertain mesoscopic parameters: yarn spacing, yarn height, yarn width and misalignment of yarn angle. The coarse-scale optimization has been carried out to optimize the stacking sequences of symmetric hybrid laminated composite plate with uncertain mesoscopic parameters by employing the Ant Colony Algorithm (ACO). The objective functions of the coarse-scale optimization are to minimize the cost (C) and weight (W) of the hybrid laminated composite plate considering the fundamental frequency and the buckling load factor as the design constraints. Based on the uncertainty criteria of the design parameters, the appropriate variation required for the structural design standards can be evaluated using the reliability tool, and then an optimized design decision in consideration of cost can be subsequently determined.}, subject = {Verbundwerkstoff}, language = {en} } @unpublished{VogelVoelkerBodeetal., author = {Vogel, Albert and V{\"o}lker, Conrad and Bode, Matthias and Marx, Steffen}, title = {Messung und Simulation der Erw{\"a}rmung von erm{\"u}dungsbeanspruchten Betonprobek{\"o}rpern}, series = {Bauphysik}, volume = {2020}, journal = {Bauphysik}, number = {Volume 42, Issue 2}, publisher = {John Wiley and Sons}, doi = {10.25643/bauhaus-universitaet.4147}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200425-41471}, pages = {86 -- 93}, abstract = {Im vorliegenden Beitrag werden Messungen und Berechnungen vorgestellt, die die Temperaturentwicklung in Betonzylindern aufgrund zyklischer Beanspruchung genau beschreiben. Die Messungen wurden in einem Versuchsstand, die Berechnungen im FEM-Programm ANSYS durchgef{\"u}hrt. Mit Hilfe der Temperaturmessungen konnten die Simulationen f{\"u}r die Temperaturentwicklung der Betonzylinder mit der verwendeten Betonrezeptur validiert werden. Die Untersuchungen lassen den Schluss zu, dass bei zyklischer Probek{\"o}rperbelastung und der einhergehenden Probek{\"o}rperdehnung Energie dissipiert wird und diese maßgeblich f{\"u}r die Erw{\"a}rmung der Probe verantwortlich ist.}, subject = {zyklische Beanspruchung}, language = {de} } @inproceedings{PaulRodehorst, author = {Paul, Debus and Rodehorst, Volker}, title = {Multi-Scale Flight Path Planning for UAS Building Inspection}, series = {Proceedings of the 18th International Conference on Computing in Civil and Building Engineering}, volume = {2020}, booktitle = {Proceedings of the 18th International Conference on Computing in Civil and Building Engineering}, editor = {Santos, Toledo}, publisher = {Springer}, doi = {10.25643/bauhaus-universitaet.4205}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201009-42053}, pages = {19}, abstract = {Unmanned aircraft systems (UAS) show large potential for the construction industry. Their use in condition assessment has increased significantly, due to technological and computational progress. UAS play a crucial role in developing a digital maintenance strategy for infrastructure, saving cost and effort, while increasing safety and reliability. Part of that strategy are automated visual UAS inspections of the building's condition. The resulting images can automatically be analyzed to identify and localize damages to the structure that have to be monitored. Further interest in parts of a structure can arise from events like accidents or collisions. Areas of low interest exist, where low resolution monitoring is sufficient. From different requirements for resolution, different levels of detail can be derived. They require special image acquisition parameters that differ mainly in the distance between camera and structure. Areas with a higher level of detail require a smaller distance to the object, producing more images. This work proposes a multi-scale flight path planning procedure, enabling higher resolution requirements for areas of special interest, while reducing the number of required images to a minimum. Careful selection of the camera positions maintains the complete coverage of the structure, while achieving the required resolution in all areas. The result is an efficient UAS inspection, reducing effort for the maintenance of infrastructure.}, subject = {Drohne}, language = {en} } @misc{Ansari, type = {Master Thesis}, author = {Ansari, Meisam}, title = {Simulation methods for functional and microstructured composite materials}, doi = {10.25643/bauhaus-universitaet.4278}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201103-42783}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {110}, abstract = {In this thesis, a generic model for the post-failure behavior of concrete in tension is proposed. A mesoscale model of concrete representing the heterogeneous nature of concrete is formulated. The mesoscale model is composed of three phases: aggregate, mortar matrix, and the Interfacial Transition Zone between them. Both local and non-local formulations of the damage are implemented and the results are compared. Three homogenization schemes from the literature are employed to obtain the homogenized constitutive relationship for the macroscale model. Three groups of numerical examples are provided.}, subject = {Simulation}, language = {en} }