@phdthesis{Chan, author = {Chan, Chiu Ling}, title = {Smooth representation of thin shells and volume structures for isogeometric analysis}, doi = {10.25643/bauhaus-universitaet.4208}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200812-42083}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {162}, abstract = {The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of "isoparametric", for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.}, subject = {Modellierung}, language = {en} } @phdthesis{Oucif, author = {Oucif, Chahmi}, title = {Analytical Modeling of Self-Healing and Super Healing in Cementitious Materials}, doi = {10.25643/bauhaus-universitaet.4229}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200831-42296}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {208}, abstract = {Self-healing materials have recently become more popular due to their capability to autonomously and autogenously repair the damage in cementitious materials. The concept of self-healing gives the damaged material the ability to recover its stiffness. This gives a difference in comparing with a material that is not subjected to healing. Once this material is damaged, it cannot sustain loading due to the stiffness degradation. Numerical modeling of self-healing materials is still in its infancy. Multiple experimental researches were conducted in literature to describe the behavior of self-healing of cementitious materials. However, few numerical investigations were undertaken. The thesis presents an analytical framework of self-healing and super healing materials based on continuum damage-healing mechanics. Through this framework, we aim to describe the recovery and strengthening of material stiffness and strength. A simple damage healing law is proposed and applied on concrete material. The proposed damage-healing law is based on a new time-dependent healing variable. The damage-healing model is applied on isotropic concrete material at the macroscale under tensile load. Both autonomous and autogenous self-healing mechanisms are simulated under different loading conditions. These two mechanisms are denoted in the present work by coupled and uncoupled self-healing mechanisms, respectively. We assume in the coupled self-healing that the healing occurs at the same time with damage evolution, while we assume in the uncoupled self-healing that the healing occurs when the material is deformed and subjected to a rest period (damage is constant). In order to describe both coupled and uncoupled healing mechanisms, a one-dimensional element is subjected to different types of loading history. In the same context, derivation of nonlinear self-healing theory is given, and comparison of linear and nonlinear damage-healing models is carried out using both coupled and uncoupled self-healing mechanisms. The nonlinear healing theory includes generalized nonlinear and quadratic healing models. The healing efficiency is studied by varying the values of the healing rest period and the parameter describing the material characteristics. In addition, theoretical formulation of different self-healing variables is presented for both isotropic and anisotropic maerials. The healing variables are defined based on the recovery in elastic modulus, shear modulus, Poisson's ratio, and bulk modulus. The evolution of the healing variable calculated based on cross-section as function of the healing variable calculated based on elastic stiffness is presented in both hypotheses of elastic strain equivalence and elastic energy equivalence. The components of the fourth-rank healing tensor are also obtained in the case of isotropic elasticity, plane stress and plane strain. Recent research revealed that self-healing presents a crucial solution also for the strengthening of the materials. This new concept has been termed ``Super Healing``. Once the stiffness of the material is recovered, further healing can result as a strengthening material. In the present thesis, new theory of super healing materials is defined in isotropic and anisotropic cases using sound mathematical and mechanical principles which are applied in linear and nonlinear super healing theories. Additionally, the link of the proposed theory with the theory of undamageable materials is outlined. In order to describe the super healing efficiency in linear and nonlinear theories, the ratio of effective stress to nominal stress is calculated as function of the super healing variable. In addition, the hypotheses of elastic strain and elastic energy equivalence are applied. In the same context, new super healing matrix in plane strain is proposed based on continuum damage-healing mechanics. In the present work, we also focus on numerical modeling of impact behavior of reinforced concrete slabs using the commercial finite element package Abaqus/Explicit. Plain and reinforced concrete slabs of unconfined compressive strength 41 MPa are simulated under impact of ogive-nosed hard projectile. The constitutive material modeling of the concrete and steel reinforcement bars is performed using the Johnson-Holmquist-2 damage and the Johnson-Cook plasticity material models, respectively. Damage diameters and residual velocities obtained by the numerical model are compared with the experimental results and effect of steel reinforcement and projectile diameter is studied.}, subject = {Schaden}, language = {en} } @phdthesis{Truemer, author = {Tr{\"u}mer, Andr{\´e}}, title = {Calcinierte Tone als Puzzolane der Zukunft - Von den Rohstoffen bis zur Wirkung im Beton}, isbn = {978-3-00-065011-6}, doi = {10.25643/bauhaus-universitaet.4096}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200214-40968}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {222}, abstract = {Vor dem Hintergrund einer stetig wachsenden Nachfrage an Beton wie auch ambitionierter Reduktionsziele beim in der Zementproduktion anfallenden CO2 gelten calcinierte Tone als derzeit aussichtsreichste technische Neuerung im Bereich nachhaltiger Bindemittelkonzepte. Unter Ausnutzung ihrer Puzzolanit{\"a}t soll ein erheblicher Teil der Klinkerkomponente im Zement ersetzt werden, wobei der zu ihrer Aktivierung notwendige Energiebedarf vergleichsweise niedrig ist. Wesentliche Vorteile der Tone sind ihre weltweit nahezu unbegrenzte Verf{\"u}gbarkeit sowie der {\"a}ußerst geringe rohstoffbedingte CO2-Ausstoß w{\"a}hrend der Calcinierung. Schwierigkeiten auf dem Weg der Umsetzung bestehen allerdings in der Vielseitigkeit des Systems, welches durch eine hohe Variet{\"a}t der Rohtone und des daraus folgenden thermischen Verhaltens gekennzeichnet ist. Entsprechend schwierig ist die {\"U}bertragbarkeit von Erfahrungen mit bereits etablierten calcinierten Tonen wie dem Metakaolin, der sich durch hohe Reinheit, einen aufwendigen Aufbereitungsprozess und eine entsprechend hohe Reaktivit{\"a}t auszeichnet. Ziel der Arbeit ist es daher, den bereits erlangten Kenntnisstand auf andere, wirtschaftlich relevante Tone zu erweitern und deren Eignung f{\"u}r die Anwendung im Beton herauszuarbeiten. In einem mehrstufigen Arbeitsprogramm wurde untersucht, inwieweit großtechnisch nutzbare Tone aktivierbar sind und welche Eigenschaften sich daraus f{\"u}r Zement und Beton ergeben. Die dabei festgestellte Reihenfolge Kaolinit > Montmorillonit > Illit beschreibt sowohl die Reaktivit{\"a}t der Brennprodukte als auch umgekehrt die H{\"o}he der optimalen Calciniertemperatur. Auch wandelt sich der Charakter der entstandenen Metaphasen in dieser Abfolge von r{\"o}ntgenamorph und hochreaktiv zu glasig und reaktionstr{\"a}ge. Trotz dieser Einordnung konnte selbst mit dem Illit eine mit Steinkohlenflugasche vergleichbare Puzzolanit{\"a}t festgestellt werden. Dies best{\"a}tigte sich anschließend in Parameterversuchen, bei denen die Einfl{\"u}sse von Rohstoffqualit{\"a}t, Calcinierung, Aufbereitung und Zement hinsichtlich der Reaktivit{\"a}tsausbeute bewertet wurden. Die Bandbreite der erzielbaren Qualit{\"a}ten ist dabei immens und gipfelt nicht zuletzt in stark unterschiedlichen Wirkungen auf die Festbetoneigenschaften. Hier machte sich vor allem die f{\"u}r Puzzolane typische Porenverfeinerung bemerkbar, sodass viele von Transportvorg{\"a}ngen abh{\"a}ngige Schadmechanismen unterdr{\"u}ckt wurden. Andere Schadex-positionen wie der Frostangriff ließen sich durch Zusatzmaßnahmen wie dem Eintrag von Luftporen beherrschen. Zu bem{\"a}ngeln sind vor allem die schlechte Verarbeitbarkeit kaolinitischer Metatone wie auch die f{\"u}r Puzzolane stark ausgepr{\"a}gte Carbonatisierungsneigung. Wesentliches Ergebnis der Arbeit ist, dass auch Tone, die bisher als geringwertig bez{\"u}glich des Aktivierungspotentials galten, nutzbare puzzolanische Eigenschaften entwickeln k{\"o}nnen. So kann selbst ein stark verunreinigter Illit-Ton die Qualit{\"a}t von Flugasche erreichen. Mit stei-gendem Tonmineralgehalt sowie bei Pr{\"a}sens thermisch instabilerer Tonminerale wie Mont-morillonit und Kaolinit erweitert sich das Spektrum nutzbarer Puzzolanit{\"a}ten bis hin zur hochreaktiven Metakaolin-Qualit{\"a}t. Damit lassen sich gute bis sehr gute Betoneigenschaften erzielen, sodass die Leistungsf{\"a}higkeit etablierter Kompositmaterialien erreicht wird. Somit sind die Voraussetzungen f{\"u}r eine umfangreiche Nutzung der erheblichen Tonmengen im Zement und Beton gegeben. Entsprechend k{\"o}nnen Tone einen effektiven Beitrag zu einer gesteigerten Nachhaltigkeit in der Baustoffproduktion weltweit leisten.}, subject = {Beton}, language = {de} }