@inproceedings{BrehmMost2003, author = {Brehm, Maik and Most, Thomas}, title = {A Four-Node Plane EAS-Element for Stochastic Nonlinear Materials}, doi = {10.25643/bauhaus-universitaet.282}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2825}, year = {2003}, abstract = {Iso-parametric finite elements with linear shape functions show in general a too stiff element behavior, called locking. By the investigation of structural parts under bending loading the so-called shear locking appears, because these elements can not reproduce pure bending modes. Many studies dealt with the locking problem and a number of methods to avoid the undesirable effects have been developed. Two well known methods are the >Assumed Natural Strain< (ANS) method and the >Enhanced Assumed Strain< (EAS) method. In this study the EAS method is applied to a four-node plane element with four EAS-parameters. The paper will describe the well-known linear formulation, its extension to nonlinear materials and the modeling of material uncertainties with random fields. For nonlinear material behavior the EAS parameters can not be determined directly. Here the problem is solved by using an internal iteration at the element level, which is much more efficient and stable than the determination via a global iteration. To verify the deterministic element behavior the results of common test examples are presented for linear and nonlinear materials. The modeling of material uncertainties is done by point-discretized random fields. To show the applicability of the element for stochastic finite element calculations Latin Hypercube Sampling was applied to investigate the stochastic hardening behavior of a cantilever beam with nonlinear material. The enhanced linear element can be applied as an alternative to higher-order finite elements where more nodes are necessary. The presented element formulation can be used in a similar manner to improve stochastic linear solid elements.}, subject = {Nichtlineare Mechanik}, language = {en} } @phdthesis{Msekh, author = {Msekh, Mohammed Abdulrazzak}, title = {Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials}, doi = {10.25643/bauhaus-universitaet.3229}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170615-32291}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {190}, abstract = {The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine-scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young's modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.}, subject = {Finite-Elemente-Methode}, language = {en} } @misc{Li2006, author = {Li, Fei}, title = {Numerische Untersuchungen zu Temperaturfeldern und Eigenspannungen einer MAG-geschweißten Stumpfnaht an austenitisch-ferritischem Stahl X2CrNiMoN22-5-3}, doi = {10.25643/bauhaus-universitaet.786}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7862}, year = {2006}, abstract = {Auf der Basis der Literaturrecherche wird in dieser Arbeit eine 5-lagige MAG-geschweißte Stumpfnaht an austenitisch-ferritischen Stahl X2CrNiMoN22-5-3 (Duplex-Stahl 1.4462) mit dem FE-Programm „SYSWELD®" simuliert. Die Berech-nungen der Temperaturfelder werden unter der Ber{\"u}cksichtigung sowohl von tempe-raturunabh{\"a}ngigen als auch temperaturabh{\"a}ngigen thermophysikalischen Material-eigenschaften am drei-dimensionalen und zwei-dimensionalen Modell durchgef{\"u}hrt. Die berechneten Temperatur-Zeit-Verl{\"a}ufe und Gef{\"u}geumwandlungen beim MAG-Schweißen der Stumpfnaht werden hinsichtlich der Einfl{\"u}sse und Ver{\"a}nderun-gen analysiert und die ermittelten Abk{\"u}hlzeiten t12/8 werden f{\"u}r jede Schweißlage bewertet. Anschließend werden die Berechnungen des Eigenspannungszustandes f{\"u}r einzelne Schweißlagen untersucht.}, subject = {Duplexstahl}, language = {de} }