@article{KraazKoopWunschetal., author = {Kraaz, Luise and Koop, Maria and Wunsch, Maximilian and Plank-Wiedenbeck, Uwe}, title = {The Scaling Potential of Experimental Knowledge in the Case of the Bauhaus.MobilityLab, Erfurt (Germany)}, series = {Urban Planning}, volume = {2022}, journal = {Urban Planning}, number = {Volume 7, Issue 3}, doi = {10.17645/up.v7i3.5329}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230509-63633}, pages = {274 -- 284}, abstract = {Real-world labs hold the potential to catalyse rapid urban transformations through real-world experimentation. Characterised by a rather radical, responsive, and location-specific nature, real-world labs face constraints in the scaling of experimental knowledge. To make a significant contribution to urban transformation, the produced knowledge must go beyond the level of a building, street, or small district where real-world experiments are conducted. Thus, a conflict arises between experimental boundaries and the stimulation of broader implications. The challenges of scaling experimental knowledge have been recognised as a problem, but remain largely unexplained. Based on this, the article will discuss the applicability of the "typology of amplification processes" by Lam et al. (2020) to explore and evaluate the potential of scaling experimental knowledge from real-world labs. The application of the typology is exemplified in the case of the Bauhaus.MobilityLab. The Bauhaus.MobilityLab takes a unique approach by testing and developing cross-sectoral mobility, energy, and logistics solutions with a distinct focus on scaling knowledge and innovation. For this case study, different qualitative research techniques are combined according to "within-method triangulation" and synthesised in a strengths, weaknesses, opportunities, and threats (SWOT) analysis. The analysis of the Bauhaus.MobilityLab proves that the "typology of amplification processes" is useful as a systematic approach to identifying and evaluating the potential of scaling experimental knowledge.}, subject = {Stadtplanung}, language = {en} } @article{AicherBoermelLondongetal., author = {Aicher, Andreas and B{\"o}rmel, Melanie and Londong, J{\"o}rg and Beier, Silvio}, title = {Vertical green system for gray water treatment: Analysis of the VertiKKA-module in a field test}, series = {Frontiers in Environmental Science}, volume = {2022}, journal = {Frontiers in Environmental Science}, number = {Volume 10 (2022), article 976005}, publisher = {Frontiers Media}, address = {Lausanne}, doi = {10.3389/fenvs.2022.976005}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230124-48840}, pages = {1 -- 7}, abstract = {This work presents a modular Vertical Green System (VGS) for gray water treatment, developed at the Bauhaus-Universit{\"a}t Weimar. The concept was transformed into a field study with four modules built and tested with synthetic gray water. Each module set contains a small and larger module with the same treatment substrate and was fed hourly. A combination of lightweight structural material and biochar of agricultural residues and wood chips was used as the treatment substrate. In this article, we present the first 18 weeks of operation. Regarding the treatment efficiency, the parameters chemical oxygen demand (COD), total phosphorous (TP), ortho-phosphate (ortho-P), total bound nitrogen (TNb), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) were analyzed and are presented in this work. The results of the modules with agricultural residues are promising. Up to 92\% COD reduction is stated in the data. The phosphate and nitrogen fractions are reduced significantly in these modules. By contrast, the modules with wood chips reduce only 67\% of the incoming COD and respectively less regarding phosphates and the nitrogen fraction.}, subject = {Grauwasser}, language = {en} } @article{AlaladeReichertKoehnetal., author = {Alalade, Muyiwa and Reichert, Ina and K{\"o}hn, Daniel and Wuttke, Frank and Lahmer, Tom}, title = {A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, issue 12, article 161}, editor = {Qu, Chunxu and Gao, Chunxu and Zhang, Rui and Jia, Ziguang and Li, Jiaxiang}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7120161}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221201-48396}, pages = {19}, abstract = {For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution "interpretable" images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams.}, subject = {Damm}, language = {en} } @article{MehlingSchnabelLondong, author = {Mehling, Simon and Schnabel, Tobias and Londong, J{\"o}rg}, title = {Investigation on Energetic Efficiency of Reactor Systems for Oxidation of Micro-Pollutants by Immobilized Active Titanium Dioxide Photocatalysis}, series = {Water}, volume = {2022}, journal = {Water}, number = {Volume 14, issue 7, article 2681}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w14172681}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220912-47130}, pages = {1 -- 15}, abstract = {In this work, the degradation performance for the photocatalytic oxidation of eight micropollutants (amisulpride, benzotriazole, candesartan, carbamazepine, diclofenac, gabapentin, methlybenzotriazole, and metoprolol) within real secondary effluent was investigated using three different reactor designs. For all reactor types, the influence of irradiation power on its reaction rate and energetic efficiency was investigated. Flat cell and batch reactor showed almost similar substance specific degradation behavior. Within the immersion rotary body reactor, benzotriazole and methylbenzotriazole showed a significantly lower degradation affinity. The flat cell reactor achieved the highest mean degradation rate, with half time values ranging from 5 to 64 min with a mean of 18 min, due to its high catalysts surface to hydraulic volume ratio. The EE/O values were calculated for all micro-pollutants as well as the mean degradation rate constant of each experimental step. The lowest substance specific energy per order (EE/O) values of 5 kWh/m3 were measured for benzotriazole within the batch reactor. The batch reactor also reached the lowest mean values (11.8-15.9 kWh/m3) followed by the flat cell reactor (21.0-37.0 kWh/m3) and immersion rotary body reactor (23.9-41.0 kWh/m3). Catalyst arrangement and irradiation power were identified as major influences on the energetic performance of the reactors. Low radiation intensities as well as the use of submerged catalyst arrangement allowed a reduction in energy demand by a factor of 3-4. A treatment according to existing treatment goals of wastewater treatment plants (80\% total degradation) was achieved using the batch reactor with a calculated energy demand of 7000 Wh/m3.}, subject = {Fotokatalyse}, language = {en} } @article{AlYasiriMutasharGuerlebecketal., author = {Al-Yasiri, Zainab Riyadh Shaker and Mutashar, Hayder Majid and G{\"u}rlebeck, Klaus and Lahmer, Tom}, title = {Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, Issue 8 (August 2022), article 104}, editor = {Shafiullah, GM}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7080104}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220831-47093}, pages = {18}, abstract = {One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called "forward codes" for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves.}, subject = {Windkraftwerk}, language = {en} } @article{Lutolli, author = {Lutolli, Blerim}, title = {A Review of Domed Cities and Architecture: Past, Present and Future}, series = {Future cities and environment}, volume = {2022}, journal = {Future cities and environment}, number = {Volume 8, issue 1}, publisher = {Ubiquity Press Limited}, address = {London}, doi = {10.5334/fce.154}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221103-47335}, pages = {1 -- 9}, abstract = {The goal of architecture is changing in response to the expanding role of cities, rapid urbanization, and transformation under changing economic, environmental, social, and demographic factors. As cities increased in the early modern era, overcrowding, urbanization, and pollution conditions led reformers to consider the future shape of the cities. One of the most critical topics in contemporary architecture is the subject of the future concepts of living. In most cases, domed cities, as a future concept of living, are rarely considered, and they are used chiefly as "utopian" visions in the discourse of future ways of living. This paper highlights the reviews of domed cities to deepen the understanding of the idea in practice, like its approach in terms of architecture. The main aim of this paper is to provide a broad overview for domed cities in the face of pollution as one of the main concerns in many European cities. As a result, the significance of the reviews of the existing projects is focused on their conceptual quality. This review will pave the way for further studies in terms of future developments in the realm of domed cities. In this paper, the city of Celje, one of the most polluted cities in Slovenia, is taken as a case study for considering the concept of Dome incorporated due to the lack of accessible literature on the topic. This review's primary contribution is to allow architects to explore a broad spectrum of innovation by comparing today's achievable statuses against the possibilities generated by domed cities. As a result of this study, the concept of living under the Dome remains to be developed in theory and practice. The current challenging climatic situation will accelerate the evolution of these concepts, resulting in the formation of new typologies, which are a requirement for humanity.}, subject = {Architektur}, language = {en} } @article{ChowdhuryZabel, author = {Chowdhury, Sharmistha and Zabel, Volkmar}, title = {Influence of loading sequence on wind induced fatigue assessment of bolts in TV-tower connection block}, series = {Results in Engineering}, volume = {2022}, journal = {Results in Engineering}, number = {Volume 16, article 100603}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2022.100603}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47303}, pages = {1 -- 18}, abstract = {Bolted connections are widely employed in structures like transmission poles, wind turbines, and television (TV) towers. The behaviour of bolted connections is often complex and plays a significant role in the overall dynamic characteristics of the structure. The goal of this work is to conduct a fatigue lifecycle assessment of such a bolted connection block of a 193 m tall TV tower, for which 205 days of real measurement data have been obtained from the installed monitoring devices. Based on the recorded data, the best-fit stochastic wind distribution for 50 years, the decisive wind action, and the locations to carry out the fatigue analysis have been decided. A 3D beam model of the entire tower is developed to extract the nodal forces corresponding to the connection block location under various mean wind speeds, which is later coupled with a detailed complex finite element model of the connection block, with over three million degrees of freedom, for acquiring stress histories on some pre-selected bolts. The random stress histories are analysed using the rainflow counting algorithm (RCA) and the damage is estimated using Palmgren-Miner's damage accumulation law. A modification is proposed to integrate the loading sequence effect into the RCA, which otherwise is ignored, and the differences between the two RCAs are investigated in terms of the accumulated damage.}, subject = {Schadensakkumulation}, language = {en} } @article{MaiwaldSchwarzKaufmannetal., author = {Maiwald, Holger and Schwarz, Jochen and Kaufmann, Christian and Langhammer, Tobias and Golz, Sebastian and Wehner, Theresa}, title = {Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events: Prognosis of Structural Damage with a New Approach Considering Flow Velocity}, series = {Water}, volume = {2022}, journal = {Water}, number = {Volume 14, issue 18, article 2793}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w14182793}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221012-47254}, pages = {1 -- 28}, abstract = {The floods in 2002 and 2013, as well as the recent flood of 2021, caused billions Euros worth of property damage in Germany. The aim of the project Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events (INNOVARU) involved the development of a practicable flood damage model that enables realistic damage statements for the residential building stock. In addition to the determination of local flood risks, it also takes into account the vulnerability of individual buildings and allows for the prognosis of structural damage. In this paper, we discuss an improved method for the prognosis of structural damage due to flood impact. Detailed correlations between inundation level and flow velocities depending on the vulnerability of the building types, as well as the number of storeys, are considered. Because reliable damage data from events with high flow velocities were not available, an innovative approach was adopted to cover a wide range of flow velocities. The proposed approach combines comprehensive damage data collected after the 2002 flood in Germany with damage data of the 2011 Tohoku earthquake tsunami in Japan. The application of the developed methods enables a reliable reinterpretation of the structural damage caused by the August flood of 2002 in six study areas in the Free State of Saxony.}, subject = {Bauschaden}, language = {en} } @article{ArnoldKraus, author = {Arnold, Robert and Kraus, Matthias}, title = {On the nonstationary identification of climate-influenced loads for the semi-probabilistic approach using measured and projected data}, series = {Cogent Engineering}, volume = {2022}, journal = {Cogent Engineering}, number = {Volume 9, issue 1, article 2143061}, editor = {Pham, Duc}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/23311916.2022.2143061}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221117-47363}, pages = {1 -- 26}, abstract = {A safe and economic structural design based on the semi-probabilistic concept requires statistically representative safety elements, such as characteristic values, design values, and partial safety factors. Regarding climate loads, the safety levels of current design codes strongly reflect experiences based on former measurements and investigations assuming stationary conditions, i.e. involving constant frequencies and intensities. However, due to climate change, occurrence of corresponding extreme weather events is expected to alter in the future influencing the reliability and safety of structures and their components. Based on established approaches, a systematically refined data-driven methodology for the determination of design parameters considering nonstationarity as well as standardized targets of structural reliability or safety, respectively, is therefore proposed. The presented procedure picks up fundamentals of European standardization and extends them with respect to nonstationarity by applying a shifting time window method. Taking projected snow loads into account, the application of the method is exemplarily demonstrated and various influencing parameters are discussed.}, subject = {Reliabilit{\"a}t}, language = {en} } @article{ChowdhuryKraus, author = {Chowdhury, Sharmistha and Kraus, Matthias}, title = {Design-related reassessment of structures integrating Bayesian updating of model safety factors}, series = {Results in Engineering}, volume = {2022}, journal = {Results in Engineering}, number = {Volume 16, article 100560}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2022.100560}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47294}, pages = {1 -- 1}, abstract = {In the semi-probabilistic approach of structural design, the partial safety factors are defined by considering some degree of uncertainties to actions and resistance, associated with the parameters' stochastic nature. However, uncertainties for individual structures can be better examined by incorporating measurement data provided by sensors from an installed health monitoring scheme. In this context, the current study proposes an approach to revise the partial safety factor for existing structures on the action side, γE by integrating Bayesian model updating. A simple numerical example of a beam-like structure with artificially generated measurement data is used such that the influence of different sensor setups and data uncertainties on revising the safety factors can be investigated. It is revealed that the health monitoring system can reassess the current capacity reserve of the structure by updating the design safety factors, resulting in a better life cycle assessment of structures. The outcome is furthermore verified by analysing a real life small railway steel bridge ensuring the applicability of the proposed method to practical applications.}, subject = {Lebenszyklus}, language = {en} } @article{HarirchianIsik, author = {Harirchian, Ehsan and Isik, Ercan}, title = {A Comparative Probabilistic Seismic Hazard Analysis for Eastern Turkey (Bitlis) Based on Updated Hazard Map and Its Effect on Regular RC Structures}, series = {Buildings}, volume = {2022}, journal = {Buildings}, number = {Volume 12, issue 10, article 1573}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/buildings12101573}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47283}, pages = {1 -- 19}, abstract = {Determining the earthquake hazard of any settlement is one of the primary studies for reducing earthquake damage. Therefore, earthquake hazard maps used for this purpose must be renewed over time. Turkey Earthquake Hazard Map has been used instead of Turkey Earthquake Zones Map since 2019. A probabilistic seismic hazard was performed by using these last two maps and different attenuation relationships for Bitlis Province (Eastern Turkey) were located in the Lake Van Basin, which has a high seismic risk. The earthquake parameters were determined by considering all districts and neighborhoods in the province. Probabilistic seismic hazard analyses were carried out for these settlements using seismic sources and four different attenuation relationships. The obtained values are compared with the design spectrum stated in the last two earthquake maps. Significant differences exist between the design spectrum obtained according to the different exceedance probabilities. In this study, adaptive pushover analyses of sample-reinforced concrete buildings were performed using the design ground motion level. Structural analyses were carried out using three different design spectra, as given in the last two seismic design codes and the mean spectrum obtained from attenuation relationships. Different design spectra significantly change the target displacements predicted for the performance levels of the buildings.}, subject = {Erbeben}, language = {en} } @article{KumariHarirchianLahmeretal., author = {Kumari, Vandana and Harirchian, Ehsan and Lahmer, Tom and Rasulzade, Shahla}, title = {Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings}, series = {Buildings}, volume = {2022}, journal = {Buildings}, number = {Volume 12, issue 5, article 578}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/buildings12050578}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220509-46387}, pages = {1 -- 23}, abstract = {The seismic vulnerability assessment of existing reinforced concrete (RC) buildings is a significant source of disaster mitigation plans and rescue services. Different countries evolved various Rapid Visual Screening (RVS) techniques and methodologies to deal with the devastating consequences of earthquakes on the structural characteristics of buildings and human casualties. Artificial intelligence (AI) methods, such as machine learning (ML) algorithm-based methods, are increasingly used in various scientific and technical applications. The investigation toward using these techniques in civil engineering applications has shown encouraging results and reduced human intervention, including uncertainties and biased judgment. In this study, several known non-parametric algorithms are investigated toward RVS using a dataset employing different earthquakes. Moreover, the methodology encourages the possibility of examining the buildings' vulnerability based on the factors related to the buildings' importance and exposure. In addition, a web-based application built on Django is introduced. The interface is designed with the idea to ease the seismic vulnerability investigation in real-time. The concept was validated using two case studies, and the achieved results showed the proposed approach's potential efficiency}, subject = {Maschinelles Lernen}, language = {en} } @article{BuschowSuhrSerger, author = {Buschow, Christopher and Suhr, Maike and Serger, Hauke}, title = {Media Work as Field Advancement: The Case of Science Media Center Germany}, series = {Media and Communication}, volume = {2022}, journal = {Media and Communication}, number = {Volume 10, issue 1}, publisher = {Cogitatio Press}, address = {Lisbon}, doi = {10.17645/mac.v10i1.4454}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220125-45709}, pages = {99 -- 109}, abstract = {In the wake of the news industry's digitization, novel organizations that differ considerably from traditional media firms in terms of their functional roles and organizational practices of media work are emerging. One new type is the field repair organization, which is characterized by supporting high-quality media work to compensate for the deficits (such as those which come from cost savings and layoffs) which have become apparent in legacy media today. From a practice-theoretical research perspective and based on semi-structured interviews, virtual field observations, and document analysis, we have conducted a single case study on Science Media Center Germany (SMC), a unique non-profit news start-up launched in 2016 in Cologne, Germany. Our findings show that, in addition to field repair activities, SMC aims to facilitate progress and innovation in the field, which we refer to as field advancement. This helps to uncover emerging needs and anticipates problems before they intensify or even occur, proactively providing products and tools for future journalism. This article contributes to our understanding of novel media organizations with distinct functions in the news industry, allowing for advancements in theory on media work and the organization of journalism in times of digital upheaval.}, subject = {Journalismus}, language = {en} } @article{ArtusAlabassyKoch, author = {Artus, Mathias and Alabassy, Mohamed Said Helmy and Koch, Christian}, title = {A BIM Based Framework for Damage Segmentation, Modeling, and Visualization Using IFC}, series = {Applied Sciences}, volume = {2022}, journal = {Applied Sciences}, number = {volume 12, issue 6, article 2772}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app12062772}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220314-46059}, pages = {1 -- 24}, abstract = {Paper-based data acquisition and manual transfer between incompatible software or data formats during inspections of bridges, as done currently, are time-consuming, error-prone, cumbersome, and lead to information loss. A fully digitized workflow using open data formats would reduce data loss, efforts, and the costs of future inspections. On the one hand, existing studies proposed methods to automatize data acquisition and visualization for inspections. These studies lack an open standard to make the gathered data available for other processes. On the other hand, several studies discuss data structures for exchanging damage information among different stakeholders. However, those studies do not cover the process of automatic data acquisition and transfer. This study focuses on a framework that incorporates automatic damage data acquisition, transfer, and a damage information model for data exchange. This enables inspectors to use damage data for subsequent analyses and simulations. The proposed framework shows the potentials for a comprehensive damage information model and related (semi-)automatic data acquisition and processing.}, subject = {Building Information Modeling}, language = {en} } @article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and V{\"o}lker, Conrad}, title = {Hygrothermal simulation data of a living wall system for decentralized greywater treatment}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {volume 40, article 107741}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2021.107741}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45483}, pages = {12}, abstract = {This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article [1].}, subject = {Kupplung}, language = {en} } @article{WelchGuerra, author = {Welch Guerra, Max}, title = {Fach, Gesellschaft und Wissenschaft. Beitrag zur Debatte „Was ist Stadt? Was ist Kritik?"}, series = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, volume = {2022}, journal = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, number = {Band 10, Nr. 1}, publisher = {Sub\urban e.V.}, address = {Leipzig}, doi = {10.36900/suburban.v10i1.779}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220810-46855}, pages = {188 -- 190}, abstract = {Der Aufruf, die Begriffe Stadt und Kritik in das Zentrum einer Debatte zu stellen, bietet die große Chance, uns weit {\"u}ber begriffliche Kl{\"a}rungen unseres gemeinsamen Arbeitsgegenstands hinaus - die ja auch f{\"u}r sich selbst sehr fruchtbar sein k{\"o}nnen - {\"u}ber die Funktion zu verst{\"a}ndigen, die wir in der Gesellschaft aus{\"u}ben, wenn wir r{\"a}umliche Planung praktizieren, erforschen und lehren. Da in der Bundesrepublik nicht nur ein großer Bedarf, sondern auch eine betr{\"a}chtliche Nachfrage nach {\"o}ffentlicher Planung besteht und die planungsbezogenen Wissenschaften sich eines insgesamt stabilen institutionellen Standes erfreuen, laufen wir Gefahr, die gesellschaftspolitische Legitimation von Berufsfeld und Wissenschaft zu vernachl{\"a}ssigen, sie als gegeben zu behandeln. Wir m{\"u}ssen uns ja kaum rechtfertigen.}, subject = {Stadt}, language = {de} } @article{SoebkeLueck, author = {S{\"o}bke, Heinrich and L{\"u}ck, Andrea}, title = {Framing Algorithm-Driven Development of Sets of Objectives Using Elementary Interactions}, series = {Applied System Innovation}, volume = {2022}, journal = {Applied System Innovation}, number = {Volume 5, issue 3, article 49}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/asi5030049}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220713-46624}, pages = {1 -- 20}, abstract = {Multi-criteria decision analysis (MCDA) is an established methodology to support the decision-making of multi-objective problems. For conducting an MCDA, in most cases, a set of objectives (SOO) is required, which consists of a hierarchical structure comprised of objectives, criteria, and indicators. The development of an SOO is usually based on moderated development processes requiring high organizational and cognitive effort from all stakeholders involved. This article proposes elementary interactions as a key paradigm of an algorithm-driven development process for an SOO that requires little moderation efforts. Elementary interactions are self-contained information requests that may be answered with little cognitive effort. The pairwise comparison of elements in the well-known analytical hierarchical process (AHP) is an example of an elementary interaction. Each elementary interaction in the development process presented contributes to the stepwise development of an SOO. Based on the hypothesis that an SOO may be developed exclusively using elementary interactions (EIs), a concept for a multi-user platform is proposed. Essential components of the platform are a Model Aggregator, an Elementary Interaction Stream Generator, a Participant Manager, and a Discussion Forum. While the latter component serves the professional exchange of the participants, the first three components are intended to be automatable by algorithms. The platform concept proposed has been evaluated partly in an explorative validation study demonstrating the general functionality of the algorithms outlined. In summary, the platform concept suggested demonstrates the potential to ease SOO development processes as the platform concept does not restrict the application domain; it is intended to work with little administration moderation efforts, and it supports the further development of an existing SOO in the event of changes in external conditions. The algorithm-driven development of SOOs proposed in this article may ease the development of MCDA applications and, thus, may have a positive effect on the spread of MCDA applications.}, subject = {Multikriteria-Entscheidung}, language = {en} } @article{GuerlebeckLegatiukWebber, author = {G{\"u}rlebeck, Klaus and Legatiuk, Dmitrii and Webber, Kemmar}, title = {Operator Calculus Approach to Comparison of Elasticity Models for Modelling of Masonry Structures}, series = {Mathematics}, volume = {2022}, journal = {Mathematics}, number = {Volume 10, issue 10, article 1670}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math10101670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220721-46726}, pages = {1 -- 22}, abstract = {The solution of any engineering problem starts with a modelling process aimed at formulating a mathematical model, which must describe the problem under consideration with sufficient precision. Because of heterogeneity of modern engineering applications, mathematical modelling scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-modelling, which is more appropriate for practical engineering computations. In the field of masonry structures, a macro-model of the material can be constructed based on various elasticity theories, such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-behaviour is expected depending on the specific theory used in the background. Although there have been several theoretical studies of different elasticity theories in recent years, there is still a lack of understanding of how modelling assumptions of different elasticity theories influence the modelling results of masonry structures. Therefore, a rigorous approach to comparison of different three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper. In this way, three elasticity models are described and spatial boundary value problems for these models are discussed. In particular, explicit representation formulae for their solutions are constructed. After that, by using these representation formulae, explicit estimates for the solutions obtained by different elasticity theories are obtained. Finally, several numerical examples are presented, which indicate a practical difference in the solutions.}, subject = {Mauerwerk}, language = {en} } @article{TeitelbaumAlsaadAvivetal., author = {Teitelbaum, Eric and Alsaad, Hayder and Aviv, Dorit and Kim, Alexander and V{\"o}lker, Conrad and Meggers, Forrest and Pantelic, Jovan}, title = {Addressing a systematic error correcting for free and mixed convection when measuring mean radiant temperature with globe thermometers}, series = {Scientific reports}, volume = {2022}, journal = {Scientific reports}, number = {Volume 12, article 6473}, publisher = {Springer Nature}, address = {London}, doi = {10.1038/s41598-022-10172-5}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220509-46363}, pages = {18}, abstract = {It is widely accepted that most people spend the majority of their lives indoors. Most individuals do not realize that while indoors, roughly half of heat exchange affecting their thermal comfort is in the form of thermal infrared radiation. We show that while researchers have been aware of its thermal comfort significance over the past century, systemic error has crept into the most common evaluation techniques, preventing adequate characterization of the radiant environment. Measuring and characterizing radiant heat transfer is a critical component of both building energy efficiency and occupant thermal comfort and productivity. Globe thermometers are typically used to measure mean radiant temperature (MRT), a commonly used metric for accounting for the radiant effects of an environment at a point in space. In this paper we extend previous field work to a controlled laboratory setting to (1) rigorously demonstrate that existing correction factors used in the American Society of Heating Ventilation and Air-conditioning Engineers (ASHRAE) Standard 55 or ISO7726 for using globe thermometers to quantify MRT are not sufficient; (2) develop a correction to improve the use of globe thermometers to address problems in the current standards; and (3) show that mean radiant temperature measured with ping-pong ball-sized globe thermometers is not reliable due to a stochastic convective bias. We also provide an analysis of the maximum precision of globe sensors themselves, a piece missing from the domain in contemporary literature.}, subject = {Strahlungstemperatur}, language = {en} } @article{TarabenMorgenthal, author = {Taraben, Jakob and Morgenthal, Guido}, title = {Integration and Comparison Methods for Multitemporal Image-Based 2D Annotations in Linked 3D Building Documentation}, series = {Remote Sensing}, volume = {2022}, journal = {Remote Sensing}, number = {Volume 14, issue 9, article 2286}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/rs14092286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220513-46488}, pages = {1 -- 20}, abstract = {Data acquisition systems and methods to capture high-resolution images or reconstruct 3D point clouds of existing structures are an effective way to document their as-is condition. These methods enable a detailed analysis of building surfaces, providing precise 3D representations. However, for the condition assessment and documentation, damages are mainly annotated in 2D representations, such as images, orthophotos, or technical drawings, which do not allow for the application of a 3D workflow or automated comparisons of multitemporal datasets. In the available software for building heritage data management and analysis, a wide range of annotation and evaluation functions are available, but they also lack integrated post-processing methods and systematic workflows. The article presents novel methods developed to facilitate such automated 3D workflows and validates them on a small historic church building in Thuringia, Germany. Post-processing steps using photogrammetric 3D reconstruction data along with imagery were implemented, which show the possibilities of integrating 2D annotations into 3D documentations. Further, the application of voxel-based methods on the dataset enables the evaluation of geometrical changes of multitemporal annotations in different states and the assignment to elements of scans or building models. The proposed workflow also highlights the potential of these methods for condition assessment and planning of restoration work, as well as the possibility to represent the analysis results in standardised building model formats.}, subject = {Bauwesen}, language = {en} } @article{AlsaadHartmannHilbeletal., author = {Alsaad, Hayder and Hartmann, Maria and Hilbel, Rebecca and V{\"o}lker, Conrad}, title = {ENVI-met validation data accompanied with simulation data of the impact of facade greening on the urban microclimate}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {Volume 42, article 108200}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2022.108200}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220511-46455}, pages = {1 -- 13}, abstract = {This dataset consists mainly of two subsets. The first subset includes measurements and simulation data conducted to validate the simulation tool ENVI-met. The measurements were conducted at the campus of the Bauhaus-University Weimar in Weimar, Germany and consisted of recording exterior air temperature, globe temperature, relative humidity, and wind velocity at 1.5 m at four points on four different days. After the measurements, the geometry of the campus was modelled and meshed; the simulations were conducted using the weather data of the measurements days with the aim of investigating the accuracy of the model. The second data subset consists of ENVI-met simulation data of the potential of facade greening in improving the outdoor environment and the indoor air temperature during heatwaves in Central European cities. The data consist of the boundary conditions and the simulation output of two simulation models: with and without facade greening. The geometry of the models corresponded to a residential buildings district in Stuttgart, Germany. The simulation output consisted of exterior air temperature, mean radiant temperature, relative humidity, and wind velocity at 12 different probe points in the model in addition to the indoor air temperature of an exemplary building. The dataset presents both vertical profiles of the probed parameters as well as the time series output of the five-day simulation duration. Both data subsets correspond to the investigations presented in the co-submitted article [1].}, subject = {Messung}, language = {en} } @article{Hanna, author = {Hanna, John}, title = {Computational Modelling for the Effects of Capsular Clustering on Fracture of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique}, series = {Applied Sciences}, volume = {2022}, journal = {Applied Sciences}, number = {Volume 12, issue 10, article 5112}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app12105112}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220721-46717}, pages = {1 -- 17}, abstract = {The fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concrete cannot be made without an appropriate modelling strategy. In this paper, the effects of microcapsule size and clustering on the fractured microcapsules are studied computationally. A simple 2D computational modelling approach is developed based on the eXtended Finite Element Method (XFEM) and cohesive surface technique. The proposed model shows that the microcapsule size and clustering have significant roles in governing the load-carrying capacity and the crack propagation pattern and determines whether the microcapsule will be fractured or debonded from the concrete matrix. The higher the microcapsule circumferential contact length, the higher the load-carrying capacity. When it is lower than 25\% of the microcapsule circumference, it will result in a greater possibility for the debonding of the microcapsule from the concrete. The greater the core/shell ratio (smaller shell thickness), the greater the likelihood of microcapsules being fractured.}, subject = {Beton}, language = {en} } @book{BeeBergermannKecketal., author = {Bee, Julia and Bergermann, Ulrike and Keck, Linda and Sander, Sarah and Schwaab, Herbert and Stauff, Markus and Wagner, Franzi}, title = {Fahrradutopien. Medien, {\"A}sthetiken und Aktivismus}, publisher = {meson press}, address = {L{\"u}neburg}, isbn = {978-3-95796-196-9}, doi = {10.14619/1952}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220809-46743}, publisher = {Bauhaus-Universit{\"a}t Weimar}, pages = {266}, abstract = {Das Fahrrad ist ein Medium sozialer Ver{\"a}nderung. Seine vielf{\"a}ltigen utopischen Potenziale ergeben sich nicht zuletzt aus seinen ebenso vielf{\"a}ltigen und h{\"a}ufig {\"u}bersehenen medialen Qualit{\"a}ten: Es vermittelt, es verbindet, es {\"u}bersetzt; es modifiziert Wahrnehmung und Organisation von Raum und Zeit, von K{\"o}rpern und von Sozialit{\"a}t. Umgekehrt kann auch das medienwissenschaftliche Denken fahrradmedial ver{\"a}ndert werden. Das Fahrrad ist nicht nur Medium des sozialen und {\"o}kologischen Wandels: Radfahren er{\"o}ffnet Perspektiven, ver{\"a}ndert R{\"a}ume, l{\"a}sst neue Relationen entstehen und teilt Handlungsmacht neu auf. Fahrradutopien denkt vom Fahrrad aus und erg{\"a}nzt dabei bestehende Ans{\"a}tze zur Mobilit{\"a}tsforschung um medienkulturwissenschaftliche Perspektiven. Die Beitr{\"a}ge verbinden Medienwissenschaften und Forschungen zu Fahrradaktivismus mit der Liebe zum Radfahren. Fokussiert werden Fahrradfilme und -vlogs, Verkehr und Infrastrukturen, Virtuelle Realit{\"a}t und Fahrrad, Fahrradkollektive und Fahrradfeminismus.}, subject = {Fahrrad}, language = {de} } @article{RoskammVollmer, author = {Roskamm, Nikolai and Vollmer, Lisa}, title = {Was ist Stadt? Was ist Kritik? Einf{\"u}hrung in die Debatte zum Jubil{\"a}umsheft von sub\urban}, series = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, journal = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, number = {Band 10, Nr. 1,}, publisher = {Sub\urban e.V.}, address = {Leipzig}, doi = {10.36900/suburban.v10i1.798}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46847}, pages = {127 -- 130}, abstract = {Im Heft zum zehnj{\"a}hrigen Jubil{\"a}um von sub\urban mit dem Themenschwerpunkt „sub\x: Verortungen, Entortungen" ver{\"o}ffentlichen wir eine Debatte, die von den bisherigen in unserer Zeitschrift in dieser Rubrik gef{\"u}hrten textlichen Diskussionen abweicht. Im Vorfeld der Planungen f{\"u}r unsere Jubil{\"a}umsausgabe haben wir die aktuellen Mitglieder unseres wissenschaftlichen Beirats darum gebeten, zwei grundlegende Fragen von kritischer Stadtforschung in kurzen Beitr{\"a}gen zu diskutieren: Was ist Stadt? Was ist Kritik?}, subject = {Stadt}, language = {de} } @book{BreuerBartFreieretal., author = {Breuer, Johannes and Bart, Marlene and Freier, Alex Leo and R{\"u}nker, Maximilian and Jakubek, Kristin and Rubiano, Juan and Groos, Cora and Š{\´a}lek, Martin and Fritz, Henrieke and Kokkinidou, Eirini and Richter, Fabian and Liu, Ani and Held, Tobias and Moses, Gabriel S and Blasius, Clara Maria and Sp{\aa}ng, Fanny and Bencicova, Evelyn and R{\"u}ckeis, Julia and Thurow, Katharina and Maas, Frederike and Farf{\´a}n, Vanessa and Tikka, Emilia and Lee, Sang and Holzheu, Stefanie}, title = {Atlas der Datenk{\"o}rper. K{\"o}rperbilder in Kunst, Design und Wissenschaft im Zeitalter digitaler Medien}, volume = {2022}, editor = {Breuer, Johannes and Bart, Marlene and Freier, Alex Leo}, publisher = {transcript Verlag}, address = {Bielefeld}, issn = {2750-7483}, doi = {10.1515/9783839461785}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220411-46248}, publisher = {Bauhaus-Universit{\"a}t Weimar}, pages = {172}, abstract = {Digitale Technologien und soziale Medien ver{\"a}ndern die Selbst- und K{\"o}rperwahrnehmung und verzerren, verst{\"a}rken oder produzieren dabei spezifische K{\"o}rperbilder. Die Beitr{\"a}ger*innen kartographieren diese Ph{\"a}nomene, fragen nach ihrer medialen Existenzweise sowie nach den M{\"o}glichkeiten ihrer Kritik. Dabei begegnen sie ihrer Neuartigkeit mit einer transdisziplin{\"a}ren Herangehensweise. Aus sowohl der Perspektive k{\"u}nstlerischer und gestalterischer Forschung als auch der Kunst-, Kultur- und Medienwissenschaft sowie der Psychologie und Neurowissenschaft wird die Landschaft rezenter K{\"o}rperbilder und Techniken einer digitalen K{\"o}rperlichkeit untersucht.}, subject = {K{\"o}rperbild}, language = {de} } @misc{Vollmer, author = {Vollmer, Lisa}, title = {Aber das sind doch die Guten - oder? Wohnungsgenossenschaften in Hamburg. Rezension zu Jo-scha Metzger (2021): Genossenschaften und die Wohnungsfrage. Konflikte im Feld der Sozialen Wohnungswirtschaft. M{\"u}nster: Westf{\"a}lisches Dampfboot}, series = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, volume = {2022}, journal = {sub\urban. zeitschrift f{\"u}r kritische stadtforschung}, number = {Band 10, Nr. 1}, publisher = {sub\urban e. V.}, address = {Berlin}, doi = {10.36900/suburban.v10i1.795}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220713-46691}, pages = {261 -- 267}, abstract = {Warum werden in aktuellen Diskussionen Wohnungsgenossenschaften immer wieder als zentrale Akteure einer gemeinwohlorientierten Wohnraumversorgung benannt - obwohl sie kaum zur Schaffung neuen bezahlbaren Wohnraums beitragen? Warum wehrt sich die Mehrzahl der Wohnungsgenossenschaften mit H{\"a}nden und F{\"u}ßen gegen die Wiedereinf{\"u}hrung eines Gesetzes zur Wohnungsgemeinn{\"u}tzigkeit, obwohl es doch gerade dieses Gesetz war, dass sie im 20. Jahrhundert zu im internationalen Vergleich großen Unternehmen wachsen ließ? Sind Wohnungsgenossenschaften nun klientilistische, wenig demokratische und nur halb dekommodifizierte Marktteilnehmer oder wichtiger Teil der Wohnungsversorgung der unteren Mittelschicht? Wer Antworten auf diese und andere Fragen sucht und Differenziertheit in ihrer Beantwortung aush{\"a}lt, lese Joscha Metzers Dissertation „Genossenschaften und die Wohnungsfrage.}, subject = {Gentrifizierung}, language = {de} }