@article{FathiSajadzadehMohammadiSheshkaletal., author = {Fathi, Sadegh and Sajadzadeh, Hassan and Mohammadi Sheshkal, Faezeh and Aram, Farshid and Pinter, Gergo and Felde, Imre and Mosavi, Amir}, title = {The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health}, series = {International Journal of Environmental Research and Public Health}, volume = {2020}, journal = {International Journal of Environmental Research and Public Health}, number = {Volume 17, Issue 7, 2359}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijerph17072359}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200402-41225}, pages = {29}, abstract = {Along with environmental pollution, urban planning has been connected to public health. The research indicates that the quality of built environments plays an important role in reducing mental disorders and overall health. The structure and shape of the city are considered as one of the factors influencing happiness and health in urban communities and the type of the daily activities of citizens. The aim of this study was to promote physical activity in the main structure of the city via urban design in a way that the main form and morphology of the city can encourage citizens to move around and have physical activity within the city. Functional, physical, cultural-social, and perceptual-visual features are regarded as the most important and effective criteria in increasing physical activities in urban spaces, based on literature review. The environmental quality of urban spaces and their role in the physical activities of citizens in urban spaces were assessed by using the questionnaire tool and analytical network process (ANP) of structural equation modeling. Further, the space syntax method was utilized to evaluate the role of the spatial integration of urban spaces on improving physical activities. Based on the results, consideration of functional diversity, spatial flexibility and integration, security, and the aesthetic and visual quality of urban spaces plays an important role in improving the physical health of citizens in urban spaces. Further, more physical activities, including motivation for walking and the sense of public health and happiness, were observed in the streets having higher linkage and space syntax indexes with their surrounding texture.}, subject = {Morphologie}, language = {en} } @article{IşıkBueyueksaracLeventEkincietal., author = {I{\c{s}}{\i}k, Ercan and B{\"u}y{\"u}ksara{\c{c}}, Ayd{\i}n and Levent Ekinci, Yunus and Ayd{\i}n, Mehmet Cihan and Harirchian, Ehsan}, title = {The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey)}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7247}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42758}, pages = {23}, abstract = {The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2\%, 10\%, 50\%, and 68\% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province's design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.}, subject = {Erdbeben}, language = {en} } @article{DehghaniSalehiMosavietal., author = {Dehghani, Majid and Salehi, Somayeh and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Ghamisi, Pedram}, title = {Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices}, series = {ISPRS, International Journal of Geo-Information}, volume = {2020}, journal = {ISPRS, International Journal of Geo-Information}, number = {Volume 9, Issue 2, 73}, publisher = {MDPI}, doi = {10.3390/ijgi9020073}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200128-40740}, pages = {23}, abstract = {Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing the variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Ni{\~n}o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then, the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Additionally, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100\%. However, the seasonal precipitation may increase more than 100\% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.}, subject = {Maschinelles Lernen}, language = {en} } @phdthesis{Chan, author = {Chan, Chiu Ling}, title = {Smooth representation of thin shells and volume structures for isogeometric analysis}, doi = {10.25643/bauhaus-universitaet.4208}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200812-42083}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {162}, abstract = {The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of "isoparametric", for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.}, subject = {Modellierung}, language = {en} } @article{NabipourDehghaniMosavietal., author = {Nabipour, Narjes and Dehghani, Majid and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks}, series = {IEEE Access}, volume = {2020}, journal = {IEEE Access}, number = {volume 8}, publisher = {IEEE}, doi = {10.1109/ACCESS.2020.2964584}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40796}, pages = {15210 -- 15222}, abstract = {Hydrological drought forecasting plays a substantial role in water resources management. Hydrological drought highly affects the water allocation and hydropower generation. In this research, short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimization algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm (SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE = 0.58, SHDI3 with R 2 = 0.81 and RMSE = 0.45 and SHDI6 with R 2 = 0.82 and RMSE = 0.40.}, subject = {Maschinelles Lernen}, language = {en} } @article{MousaviSteinkeJuniorTeixeiraetal., author = {Mousavi, Seyed Nasrollah and Steinke J{\´u}nior, Renato and Teixeira, Eder Daniel and Bocchiola, Daniele and Nabipour, Narjes and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {Volume 8, Issue 3, 323}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8030323}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200402-41140}, pages = {16}, abstract = {Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k\%), and the statistical coefficient of the probability distribution (Nk\%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk\%. The values of the Nk\% coefficient indicated a single mean value for each probability.}, subject = {Maschinelles Lernen}, language = {en} } @article{SadeghzadehMaddahAhmadietal., author = {Sadeghzadeh, Milad and Maddah, Heydar and Ahmadi, Mohammad Hossein and Khadang, Amirhosein and Ghazvini, Mahyar and Mosavi, Amir Hosein and Nabipour, Narjes}, title = {Prediction of Thermo-Physical Properties of TiO2-Al2O3/Water Nanoparticles by Using Artificial Neural Network}, series = {Nanomaterials}, volume = {2020}, journal = {Nanomaterials}, number = {Volume 10, Issue 4, 697}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/nano10040697}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200421-41308}, abstract = {In this paper, an artificial neural network is implemented for the sake of predicting the thermal conductivity ratio of TiO2-Al2O3/water nanofluid. TiO2-Al2O3/water in the role of an innovative type of nanofluid was synthesized by the sol-gel method. The results indicated that 1.5 vol.\% of nanofluids enhanced the thermal conductivity by up to 25\%. It was shown that the heat transfer coefficient was linearly augmented with increasing nanoparticle concentration, but its variation with temperature was nonlinear. It should be noted that the increase in concentration may cause the particles to agglomerate, and then the thermal conductivity is reduced. The increase in temperature also increases the thermal conductivity, due to an increase in the Brownian motion and collision of particles. In this research, for the sake of predicting the thermal conductivity of TiO2-Al2O3/water nanofluid based on volumetric concentration and temperature functions, an artificial neural network is implemented. In this way, for predicting thermal conductivity, SOM (self-organizing map) and BP-LM (Back Propagation-Levenberq-Marquardt) algorithms were used. Based on the results obtained, these algorithms can be considered as an exceptional tool for predicting thermal conductivity. Additionally, the correlation coefficient values were equal to 0.938 and 0.98 when implementing the SOM and BP-LM algorithms, respectively, which is highly acceptable. View Full-Text}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @article{ShamshirbandBabanezhadMosavietal., author = {Shamshirband, Shahaboddin and Babanezhad, Meisam and Mosavi, Amir and Nabipour, Narjes and Hajnal, Eva and Nadai, Laszlo and Chau, Kwok-Wing}, title = {Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1715842}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200227-41013}, pages = {367 -- 378}, abstract = {A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR.}, subject = {Maschinelles Lernen}, language = {en} } @unpublished{AbbasKavrakovMorgenthaletal., author = {Abbas, Tajammal and Kavrakov, Igor and Morgenthal, Guido and Lahmer, Tom}, title = {Prediction of aeroelastic response of bridge decks using artificial neural networks}, doi = {10.25643/bauhaus-universitaet.4097}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200225-40974}, abstract = {The assessment of wind-induced vibrations is considered vital for the design of long-span bridges. The aim of this research is to develop a methodological framework for robust and efficient prediction strategies for complex aerodynamic phenomena using hybrid models that employ numerical analyses as well as meta-models. Here, an approach to predict motion-induced aerodynamic forces is developed using artificial neural network (ANN). The ANN is implemented in the classical formulation and trained with a comprehensive dataset which is obtained from computational fluid dynamics forced vibration simulations. The input to the ANN is the response time histories of a bridge section, whereas the output is the motion-induced forces. The developed ANN has been tested for training and test data of different cross section geometries which provide promising predictions. The prediction is also performed for an ambient response input with multiple frequencies. Moreover, the trained ANN for aerodynamic forcing is coupled with the structural model to perform fully-coupled fluid--structure interaction analysis to determine the aeroelastic instability limit. The sensitivity of the ANN parameters to the model prediction quality and the efficiency has also been highlighted. The proposed methodology has wide application in the analysis and design of long-span bridges.}, subject = {Aerodynamik}, language = {en} } @article{BandJanizadehChandraPaletal., author = {Band, Shahab S. and Janizadeh, Saeid and Chandra Pal, Subodh and Saha, Asish and Chakrabortty, Rabbin and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility}, series = {Sensors}, volume = {2020}, journal = {Sensors}, number = {Volume 20, issue 19, article 5609}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s20195609}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43341}, pages = {1 -- 27}, abstract = {This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70\%) and testing (30\%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.}, subject = {Geoinformatik}, language = {en} } @phdthesis{Salavati, author = {Salavati, Mohammad}, title = {Multi-Scale Modeling of Mechanical and Electrochemical Properties of 1D and 2D Nanomaterials, Application in Battery Energy Storage Systems}, doi = {10.25643/bauhaus-universitaet.4183}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200623-41830}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {166}, abstract = {Material properties play a critical role in durable products manufacturing. Estimation of the precise characteristics in different scales requires complex and expensive experimental measurements. Potentially, computational methods can provide a platform to determine the fundamental properties before the final experiment. Multi-scale computational modeling leads to the modeling of the various time, and length scales include nano, micro, meso, and macro scales. These scales can be modeled separately or in correlation with coarser scales. Depend on the interested scales modeling, the right selection of multi-scale methods leads to reliable results and affordable computational cost. The present dissertation deals with the problems in various length and time scales using computational methods include density functional theory (DFT), molecular mechanics (MM), molecular dynamics (MD), and finite element (FE) methods. Physical and chemical interactions in lower scales determine the coarser scale properties. Particles interaction modeling and exploring fundamental properties are significant challenges of computational science. Downscale modelings need more computational effort due to a large number of interacted atoms/particles. To deal with this problem and bring up a fine-scale (nano) as a coarse-scale (macro) problem, we extended an atomic-continuum framework. The discrete atomic models solve as a continuum problem using the computationally efficient FE method. MM or force field method based on a set of assumptions approximates a solution on the atomic scale. In this method, atoms and bonds model as a harmonic oscillator with a system of mass and springs. The negative gradient of the potential energy equal to the forces on each atom. In this way, each bond's total potential energy includes bonded, and non-bonded energies are simulated as equivalent structural strain energies. Finally, the chemical nature of the atomic bond is modeled as a piezoelectric beam element that solves by the FE method. Exploring novel materials with unique properties is a demand for various industrial applications. During the last decade, many two-dimensional (2D) materials have been synthesized and shown outstanding properties. Investigation of the probable defects during the formation/fabrication process and studying their strength under severe service life are the critical tasks to explore performance prospects. We studied various defects include nano crack, notch, and point vacancy (Stone-Wales defect) defects employing MD analysis. Classical MD has been used to simulate a considerable amount of molecules at micro-, and meso- scales. Pristine and defective nanosheet structures considered under the uniaxial tensile loading at various temperatures using open-source LAMMPS codes. The results were visualized with the open-source software of OVITO and VMD. Quantum based first principle calculations have been conducting at electronic scales and known as the most accurate Ab initio methods. However, they are computationally expensive to apply for large systems. We used density functional theory (DFT) to estimate the mechanical and electrochemical response of the 2D materials. Many-body Schr{\"o}dinger's equation describes the motion and interactions of the solid-state particles. Solid describes as a system of positive nuclei and negative electrons, all electromagnetically interacting with each other, where the wave function theory describes the quantum state of the set of particles. However, dealing with the 3N coordinates of the electrons, nuclei, and N coordinates of the electrons spin components makes the governing equation unsolvable for just a few interacted atoms. Some assumptions and theories like Born Oppenheimer and Hartree-Fock mean-field and Hohenberg-Kohn theories are needed to treat with this equation. First, Born Oppenheimer approximation reduces it to the only electronic coordinates. Then Kohn and Sham, based on Hartree-Fock and Hohenberg-Kohn theories, assumed an equivalent fictitious non-interacting electrons system as an electron density functional such that their ground state energies are equal to a set of interacting electrons. Exchange-correlation energy functionals are responsible for satisfying the equivalency between both systems. The exact form of the exchange-correlation functional is not known. However, there are widely used methods to derive functionals like local density approximation (LDA), Generalized gradient approximation (GGA), and hybrid functionals (e.g., B3LYP). In our study, DFT performed using VASP codes within the GGA/PBE approximation, and visualization/post-processing of the results realized via open-source software of VESTA. The extensive DFT calculations are conducted 2D nanomaterials prospects as anode/cathode electrode materials for batteries. Metal-ion batteries' performance strongly depends on the design of novel electrode material. Two-dimensional (2D) materials have developed a remarkable interest in using as an electrode in battery cells due to their excellent properties. Desirable battery energy storage systems (BESS) must satisfy the high energy density, safe operation, and efficient production costs. Batteries have been using in electronic devices and provide a solution to the environmental issues and store the discontinuous energies generated from renewable wind or solar power plants. Therefore, exploring optimal electrode materials can improve storage capacity and charging/discharging rates, leading to the design of advanced batteries. Our results in multiple scales highlight not only the proposed and employed methods' efficiencies but also promising prospect of recently synthesized nanomaterials and their applications as an anode material. In this way, first, a novel approach developed for the modeling of the 1D nanotube as a continuum piezoelectric beam element. The results converged and matched closely with those from experiments and other more complex models. Then mechanical properties of nanosheets estimated and the failure mechanisms results provide a useful guide for further use in prospect applications. Our results indicated a comprehensive and useful vision concerning the mechanical properties of nanosheets with/without defects. Finally, mechanical and electrochemical properties of the several 2D nanomaterials are explored for the first time—their application performance as an anode material illustrates high potentials in manufacturing super-stretchable and ultrahigh-capacity battery energy storage systems (BESS). Our results exhibited better performance in comparison to the available commercial anode materials.}, subject = {Batterie}, language = {en} } @phdthesis{HosseinNezhadShirazi, author = {Hossein Nezhad Shirazi, Ali}, title = {Multi-Scale Modeling of Lithium ion Batteries: a thermal management approach and molecular dynamic studies}, doi = {10.25643/bauhaus-universitaet.4098}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200214-40986}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Rechargeable lithium ion batteries (LIBs) play a very significant role in power supply and storage. In recent decades, LIBs have caught tremendous attention in mobile communication, portable electronics, and electric vehicles. Furthermore, global warming has become a worldwide issue due to the ongoing production of greenhouse gases. It motivates solutions such as renewable sources of energy. Solar and wind energies are the most important ones in renewable energy sources. By technology progress, they will definitely require batteries to store the produced power to make a balance between power generation and consumption. Nowadays,rechargeable batteries such as LIBs are considered as one of the best solutions. They provide high specific energy and high rate performance while their rate of self-discharge is low. Performance of LIBs can be improved through the modification of battery characteristics. The size of solid particles in electrodes can impact the specific energy and the cyclability of batteries. It can improve the amount of lithium content in the electrode which is a vital parameter in capacity and capability of a battery. There exist diferent sources of heat generation in LIBs such as heat produced during electrochemical reactions, internal resistance in battery. The size of electrode's electroactive particles can directly affect the produced heat in battery. It will be shown that the smaller size of solid particle enhance the thermal characteristics of LIBs. Thermal issues such as overheating, temperature maldistribution in the battery, and thermal runaway have confined applications of LIBs. Such thermal challenges reduce the Life cycle of LIBs. As well, they may lead to dangerous conditions such as fire or even explosion in batteries. However, recent advances in fabrication of advanced materials such as graphene and carbon nanotubes with extraordinary thermal conductivity and electrical properties propose new opportunities to enhance their performance. Since experimental works are expensive, our objective is to use computational methods to investigate the thermal issues in LIBS. Dissipation of the heat produced in the battery can improve the cyclability and specific capacity of LIBs. In real applications, packs of LIB consist several battery cells that are used as the power source. Therefore, it is worth to investigate thermal characteristic of battery packs under their cycles of charging/discharging operations at different applied current rates. To remove the produced heat in batteries, they can be surrounded by materials with high thermal conductivity. Parafin wax absorbs high energy since it has a high latent heat. Absorption high amounts of energy occurs at constant temperature without phase change. As well, thermal conductivity of parafin can be magnified with nano-materials such as graphene, CNT, and fullerene to form a nano-composite medium. Improving the thermal conductivity of LIBs increase the heat dissipation from batteries which is a vital issue in systems of battery thermal management. The application of two-dimensional (2D) materials has been on the rise since exfoliation the graphene from bulk graphite. 2D materials are single-layered in an order of nanosizes which show superior thermal, mechanical, and optoelectronic properties. They are potential candidates for energy storage and supply, particularly in lithium ion batteries as electrode material. The high thermal conductivity of graphene and graphene-like materials can play a significant role in thermal management of batteries. However, defects always exist in nano-materials since there is no ideal fabrication process. One of the most important defects in materials are nano-crack which can dramatically weaken the mechanical properties of the materials. Newly synthesized crystalline carbon nitride with the stoichiometry of C3N have attracted many attentions due to its extraordinary mechanical and thermal properties. The other nano-material is phagraphene which shows anisotropic mechanical characteristics which is ideal in production of nanocomposite. It shows ductile fracture behavior when subjected under uniaxial loadings. It is worth to investigate their thermo-mechanical properties in its pristine and defective states. We hope that the findings of our work not only be useful for both experimental and theoretical researches but also help to design advanced electrodes for LIBs.}, subject = {Akkumulator}, language = {en} } @article{ShabaniSamadianfardSattarietal., author = {Shabani, Sevda and Samadianfard, Saeed and Sattari, Mohammad Taghi and Mosavi, Amir and Shamshirband, Shahaboddin and Kmet, Tibor and V{\´a}rkonyi-K{\´o}czy, Annam{\´a}ria R.}, title = {Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis}, series = {Atmosphere}, volume = {2020}, journal = {Atmosphere}, number = {Volume 11, Issue 1, 66}, doi = {10.3390/atmos11010066}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200110-40561}, pages = {17}, abstract = {Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters.}, subject = {Maschinelles Lernen}, language = {en} } @article{MosaviShokriMansoretal., author = {Mosavi, Amir Hosein and Shokri, Manouchehr and Mansor, Zulkefli and Qasem, Sultan Noman and Band, Shahab S. and Mohammadzadeh, Ardashir}, title = {Machine Learning for Modeling the Singular Multi-Pantograph Equations}, series = {Entropy}, volume = {2020}, journal = {Entropy}, number = {volume 22, issue 9, article 1041}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/e22091041}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43436}, pages = {1 -- 18}, abstract = {In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost.}, subject = {Fuzzy-Regelung}, language = {en} } @article{HarirchianLahmer, author = {Harirchian, Ehsan and Lahmer, Tom}, title = {Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, Issue 3, 2375}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10072375}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41161}, pages = {14}, abstract = {Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bing{\"o}l and D{\"u}zce earthquakes in Turkey.}, subject = {Fuzzy-Logik}, language = {en} } @article{SaqlaiGhaniKhanetal., author = {Saqlai, Syed Muhammad and Ghani, Anwar and Khan, Imran and Ahmed Khan Ghayyur, Shahbaz and Shamshirband, Shahaboddin and Nabipour, Narjes and Shokri, Manouchehr}, title = {Image Analysis Using Human Body Geometry and Size Proportion Science for Action Classification}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {volume 10, issue 16, article 5453}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10165453}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200904-42322}, pages = {24}, abstract = {Gestures are one of the basic modes of human communication and are usually used to represent different actions. Automatic recognition of these actions forms the basis for solving more complex problems like human behavior analysis, video surveillance, event detection, and sign language recognition, etc. Action recognition from images is a challenging task as the key information like temporal data, object trajectory, and optical flow are not available in still images. While measuring the size of different regions of the human body i.e., step size, arms span, length of the arm, forearm, and hand, etc., provides valuable clues for identification of the human actions. In this article, a framework for classification of the human actions is presented where humans are detected and localized through faster region-convolutional neural networks followed by morphological image processing techniques. Furthermore, geometric features from human blob are extracted and incorporated into the classification rules for the six human actions i.e., standing, walking, single-hand side wave, single-hand top wave, both hands side wave, and both hands top wave. The performance of the proposed technique has been evaluated using precision, recall, omission error, and commission error. The proposed technique has been comparatively analyzed in terms of overall accuracy with existing approaches showing that it performs well in contrast to its counterparts.}, subject = {Bildanalyse}, language = {en} } @phdthesis{Rabizadeh, author = {Rabizadeh, Ehsan}, title = {Goal-oriented A Posteriori Error Estimation and Adaptive Mesh Refinement in 2D/3D Thermoelasticity Problems}, doi = {10.25643/bauhaus-universitaet.4286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201113-42864}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {In recent years, substantial attention has been devoted to thermoelastic multifield problems and their numerical analysis. Thermoelasticity is one of the important categories of multifield problems which deals with the effect of mechanical and thermal disturbances on an elastic body. In other words, thermoelasticity encompasses the phenomena that describe the elastic and thermal behavior of solids and their interactions under thermo-mechanical loadings. Since providing an analytical solution for general coupled thermoelasticity problems is mathematically complicated, the development of alternative numerical solution techniques seems essential. Due to the nature of numerical analysis methods, presence of error in results is inevitable, therefore in any numerical simulation, the main concern is the accuracy of the approximation. There are different error estimation (EE) methods to assess the overall quality of numerical approximation. In many real-life numerical simulations, not only the overall error, but also the local error or error in a particular quantity of interest is of main interest. The error estimation techniques which are developed to evaluate the error in the quantity of interest are known as "goal-oriented" error estimation (GOEE) methods. This project, for the first time, investigates the classical a posteriori error estimation and goal-oriented a posteriori error estimation in 2D/3D thermoelasticity problems. Generally, the a posteriori error estimation techniques can be categorized into two major branches of recovery-based and residual-based error estimators. In this research, application of both recovery- and residual-based error estimators in thermoelasticity are studied. Moreover, in order to reduce the error in the quantity of interest efficiently and optimally in 2D and 3D thermoelastic problems, goal-oriented adaptive mesh refinement is performed. As the first application category, the error estimation in classical Thermoelasticity (CTE) is investigated. In the first step, a rh-adaptive thermo-mechanical formulation based on goal-oriented error estimation is proposed.The developed goal-oriented error estimation relies on different stress recovery techniques, i.e., the superconvergent patch recovery (SPR), L2-projection patch recovery (L2-PR), and weighted superconvergent patch recovery (WSPR). Moreover, a new adaptive refinement strategy (ARS) is presented that minimizes the error in a quantity of interest and refines the discretization such that the error is equally distributed in the refined mesh. The method is validated by numerous numerical examples where an analytical solution or reference solution is available. After investigating error estimation in classical thermoelasticity and evaluating the quality of presented error estimators, we extended the application of the developed goal-oriented error estimation and the associated adaptive refinement technique to the classical fully coupled dynamic thermoelasticity. In this part, we present an adaptive method for coupled dynamic thermoelasticity problems based on goal-oriented error estimation. We use dimensionless variables in the finite element formulation and for the time integration we employ the acceleration-based Newmark-_ method. In this part, the SPR, L2-PR, and WSPR recovery methods are exploited to estimate the error in the quantity of interest (QoI). By using adaptive refinement in space, the error in the quantity of interest is minimized. Therefore, the discretization is refined such that the error is equally distributed in the refined mesh. We demonstrate the efficiency of this method by numerous numerical examples. After studying the recovery-based error estimators, we investigated the residual-based error estimation in thermoelasticity. In the last part of this research, we present a 3D adaptive method for thermoelastic problems based on goal-oriented error estimation where the error is measured with respect to a pointwise quantity of interest. We developed a method for a posteriori error estimation and mesh adaptation based on dual weighted residual (DWR) method relying on the duality principles and consisting of an adjoint problem solution. Here, we consider the application of the derived estimator and mesh refinement to two-/three-dimensional (2D/3D) thermo-mechanical multifield problems. In this study, the goal is considered to be given by singular pointwise functions, such as the point value or point value derivative at a specific point of interest (PoI). An adaptive algorithm has been adopted to refine the mesh to minimize the goal in the quantity of interest. The mesh adaptivity procedure based on the DWR method is performed by adaptive local h-refinement/coarsening with allowed hanging nodes. According to the proposed DWR method, the error contribution of each element is evaluated. In the refinement process, the contribution of each element to the goal error is considered as the mesh refinement criterion. In this study, we substantiate the accuracy and performance of this method by several numerical examples with available analytical solutions. Here, 2D and 3D problems under thermo-mechanical loadings are considered as benchmark problems. To show how accurately the derived estimator captures the exact error in the evaluation of the pointwise quantity of interest, in all examples, considering the analytical solutions, the goal error effectivity index as a standard measure of the quality of an estimator is calculated. Moreover, in order to demonstrate the efficiency of the proposed method and show the optimal behavior of the employed refinement method, the results of different conventional error estimators and refinement techniques (e.g., global uniform refinement, Kelly, and weighted Kelly techniques) are used for comparison.}, subject = {Mesh Refinement}, language = {en} } @article{MosaviQasemShokrietal., author = {Mosavi, Amir Hosein and Qasem, Sultan Noman and Shokri, Manouchehr and Band, Shahab S. and Mohammadzadeh, Ardashir}, title = {Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature}, series = {Electronics}, volume = {2020}, journal = {Electronics}, number = {Volume 9, issue 9, article 1455}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/electronics9091455}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43381}, pages = {1 -- 19}, abstract = {For this paper, the problem of energy/voltage management in photovoltaic (PV)/battery systems was studied, and a new fractional-order control system on basis of type-3 (T3) fuzzy logic systems (FLSs) was developed. New fractional-order learning rules are derived for tuning of T3-FLSs such that the stability is ensured. In addition, using fractional-order calculus, the robustness was studied versus dynamic uncertainties, perturbation of irradiation, and temperature and abruptly faults in output loads, and, subsequently, new compensators were proposed. In several examinations under difficult operation conditions, such as random temperature, variable irradiation, and abrupt changes in output load, the capability of the schemed controller was verified. In addition, in comparison with other methods, such as proportional-derivative-integral (PID), sliding mode controller (SMC), passivity-based control systems (PBC), and linear quadratic regulator (LQR), the superiority of the suggested method was demonstrated.}, subject = {Fuzzy-Logik}, language = {en} } @article{NabipourMosaviBaghbanetal., author = {Nabipour, Narjes and Mosavi, Amir and Baghban, Alireza and Shamshirband, Shahaboddin and Felde, Imre}, title = {Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions}, series = {Processes}, volume = {2020}, journal = {Processes}, number = {Volume 8, Issue 1, 92}, publisher = {MDPI}, doi = {10.3390/pr8010092}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200113-40624}, pages = {12}, abstract = {Calculating hydrocarbon components solubility of natural gases is known as one of the important issues for operational works in petroleum and chemical engineering. In this work, a novel solubility estimation tool has been proposed for hydrocarbon gases—including methane, ethane, propane, and butane—in aqueous electrolyte solutions based on extreme learning machine (ELM) algorithm. Comparing the ELM outputs with a comprehensive real databank which has 1175 solubility points yielded R-squared values of 0.985 and 0.987 for training and testing phases respectively. Furthermore, the visual comparison of estimated and actual hydrocarbon solubility led to confirm the ability of proposed solubility model. Additionally, sensitivity analysis has been employed on the input variables of model to identify their impacts on hydrocarbon solubility. Such a comprehensive and reliable study can help engineers and scientists to successfully determine the important thermodynamic properties, which are key factors in optimizing and designing different industrial units such as refineries and petrochemical plants.}, subject = {Maschinelles Lernen}, language = {en} } @article{AhmadiBaghbanSadeghzadehetal., author = {Ahmadi, Mohammad Hossein and Baghban, Alireza and Sadeghzadeh, Milad and Zamen, Mohammad and Mosavi, Amir and Shamshirband, Shahaboddin and Kumar, Ravinder and Mohammadi-Khanaposhtani, Mohammad}, title = {Evaluation of electrical efficiency of photovoltaic thermal solar collector}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1734094}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200304-41049}, pages = {545 -- 565}, abstract = {In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations.}, subject = {Fotovoltaik}, language = {en} } @article{BandJanizadehSahaetal., author = {Band, Shahab S. and Janizadeh, Saeid and Saha, Sunil and Mukherjee, Kaustuv and Khosrobeigi Bozchaloei, Saeid and Cerd{\`a}, Artemi and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data}, series = {Land}, volume = {2020}, journal = {Land}, number = {volume 9, issue 10, article 346}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/land9100346}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43424}, pages = {1 -- 22}, abstract = {Piping erosion is one form of water erosion that leads to significant changes in the landscape and environmental degradation. In the present study, we evaluated piping erosion modeling in the Zarandieh watershed of Markazi province in Iran based on random forest (RF), support vector machine (SVM), and Bayesian generalized linear models (Bayesian GLM) machine learning algorithms. For this goal, due to the importance of various geo-environmental and soil properties in the evolution and creation of piping erosion, 18 variables were considered for modeling the piping erosion susceptibility in the Zarandieh watershed. A total of 152 points of piping erosion were recognized in the study area that were divided into training (70\%) and validation (30\%) for modeling. The area under curve (AUC) was used to assess the effeciency of the RF, SVM, and Bayesian GLM. Piping erosion susceptibility results indicated that all three RF, SVM, and Bayesian GLM models had high efficiency in the testing step, such as the AUC shown with values of 0.9 for RF, 0.88 for SVM, and 0.87 for Bayesian GLM. Altitude, pH, and bulk density were the variables that had the greatest influence on the piping erosion susceptibility in the Zarandieh watershed. This result indicates that geo-environmental and soil chemical variables are accountable for the expansion of piping erosion in the Zarandieh watershed.}, subject = {Maschinelles Lernen}, language = {en} } @article{KargarSamadianfardParsaetal., author = {Kargar, Katayoun and Samadianfard, Saeed and Parsa, Javad and Nabipour, Narjes and Shamshirband, Shahaboddin and Mosavi, Amir and Chau, Kwok-Wing}, title = {Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, No. 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1712260}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200128-40775}, pages = {311 -- 322}, abstract = {The longitudinal dispersion coefficient (LDC) plays an important role in modeling the transport of pollutants and sediment in natural rivers. As a result of transportation processes, the concentration of pollutants changes along the river. Various studies have been conducted to provide simple equations for estimating LDC. In this study, machine learning methods, namely support vector regression, Gaussian process regression, M5 model tree (M5P) and random forest, and multiple linear regression were examined in predicting the LDC in natural streams. Data sets from 60 rivers around the world with different hydraulic and geometric features were gathered to develop models for LDC estimation. Statistical criteria, including correlation coefficient (CC), root mean squared error (RMSE) and mean absolute error (MAE), were used to scrutinize the models. The LDC values estimated by these models were compared with the corresponding results of common empirical models. The Taylor chart was used to evaluate the models and the results showed that among the machine learning models, M5P had superior performance, with CC of 0.823, RMSE of 454.9 and MAE of 380.9. The model of Sahay and Dutta, with CC of 0.795, RMSE of 460.7 and MAE of 306.1, gave more precise results than the other empirical models. The main advantage of M5P models is their ability to provide practical formulae. In conclusion, the results proved that the developed M5P model with simple formulations was superior to other machine learning models and empirical models; therefore, it can be used as a proper tool for estimating the LDC in rivers.}, subject = {Maschinelles Lernen}, language = {en} } @article{AmirinasabShamshirbandChronopoulosetal., author = {Amirinasab, Mehdi and Shamshirband, Shahaboddin and Chronopoulos, Anthony Theodore and Mosavi, Amir and Nabipour, Narjes}, title = {Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things}, series = {electronics}, volume = {2020}, journal = {electronics}, number = {volume 9, issue 2, 320}, publisher = {MDPI}, doi = {10.3390/electronics9020320}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40954}, pages = {20}, abstract = {The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8\% energy consumption in nodes while maintaining up to 99\% of the packet delivery rate (PDR).}, subject = {Internet der Dinge}, language = {en} } @article{HarirchianLahmerBuddhirajuetal., author = {Harirchian, Ehsan and Lahmer, Tom and Buddhiraju, Sreekanth and Mohammad, Kifaytullah and Mosavi, Amir}, title = {Earthquake Safety Assessment of Buildings through Rapid Visual Screening}, series = {Buildings}, volume = {2020}, journal = {Buildings}, number = {Volume 10, Issue 3}, publisher = {MDPI}, doi = {10.3390/buildings10030051}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41153}, pages = {15}, abstract = {Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bing{\"o}l region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively.}, subject = {Maschinelles Lernen}, language = {en} } @article{HarirchianLahmerRasulzade, author = {Harirchian, Ehsan and Lahmer, Tom and Rasulzade, Shahla}, title = {Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network}, series = {Energies}, volume = {2020}, journal = {Energies}, number = {Volume 13, Issue 8, 2060}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en13082060}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200504-41575}, pages = {16}, abstract = {The latest earthquakes have proven that several existing buildings, particularly in developing countries, are not secured from damages of earthquake. A variety of statistical and machine-learning approaches have been proposed to identify vulnerable buildings for the prioritization of retrofitting. The present work aims to investigate earthquake susceptibility through the combination of six building performance variables that can be used to obtain an optimal prediction of the damage state of reinforced concrete buildings using artificial neural network (ANN). In this regard, a multi-layer perceptron network is trained and optimized using a database of 484 damaged buildings from the D{\"u}zce earthquake in Turkey. The results demonstrate the feasibility and effectiveness of the selected ANN approach to classify concrete structural damage that can be used as a preliminary assessment technique to identify vulnerable buildings in disaster risk-management programs.}, subject = {Erdbeben}, language = {en} } @article{MengNomanQasemShokrietal., author = {Meng, Yinghui and Noman Qasem, Sultan and Shokri, Manouchehr and Shamshirband, Shahaboddin}, title = {Dimension Reduction of Machine Learning-Based Forecasting Models Employing Principal Component Analysis}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 8, article 1233}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8081233}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200811-42125}, pages = {15}, abstract = {In this research, an attempt was made to reduce the dimension of wavelet-ANFIS/ANN (artificial neural network/adaptive neuro-fuzzy inference system) models toward reliable forecasts as well as to decrease computational cost. In this regard, the principal component analysis was performed on the input time series decomposed by a discrete wavelet transform to feed the ANN/ANFIS models. The models were applied for dissolved oxygen (DO) forecasting in rivers which is an important variable affecting aquatic life and water quality. The current values of DO, water surface temperature, salinity, and turbidity have been considered as the input variable to forecast DO in a three-time step further. The results of the study revealed that PCA can be employed as a powerful tool for dimension reduction of input variables and also to detect inter-correlation of input variables. Results of the PCA-wavelet-ANN models are compared with those obtained from wavelet-ANN models while the earlier one has the advantage of less computational time than the later models. Dealing with ANFIS models, PCA is more beneficial to avoid wavelet-ANFIS models creating too many rules which deteriorate the efficiency of the ANFIS models. Moreover, manipulating the wavelet-ANFIS models utilizing PCA leads to a significant decreasing in computational time. Finally, it was found that the PCA-wavelet-ANN/ANFIS models can provide reliable forecasts of dissolved oxygen as an important water quality indicator in rivers.}, subject = {Maschinelles Lernen}, language = {en} } @article{HassannatajJoloudariHassannatajJoloudariSaadatfaretal., author = {Hassannataj Joloudari, Javad and Hassannataj Joloudari, Edris and Saadatfar, Hamid and GhasemiGol, Mohammad and Razavi, Seyyed Mohammad and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Nadai, Laszlo}, title = {Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model}, series = {International Journal of Environmental Research and Public Health, IJERPH}, volume = {2020}, journal = {International Journal of Environmental Research and Public Health, IJERPH}, number = {Volume 17, Issue 3, 731}, publisher = {MDPI}, doi = {10.3390/ijerph17030731}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40819}, pages = {24}, abstract = {Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.}, subject = {Maschinelles Lernen}, language = {en} } @article{JilteAhmadiKumaretal., author = {Jilte, Ravindra and Ahmadi, Mohammad Hossein and Kumar, Ravinder and Kalamkar, Vilas and Mosavi, Amir}, title = {Cooling Performance of a Novel Circulatory Flow Concentric Multi-Channel Heat Sink with Nanofluids}, series = {Nanomaterials}, volume = {2020}, journal = {Nanomaterials}, number = {Volume 10, Issue 4, 647}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/nano10040647}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200401-41241}, pages = {12}, abstract = {Heat rejection from electronic devices such as processors necessitates a high heat removal rate. The present study focuses on liquid-cooled novel heat sink geometry made from four channels (width 4 mm and depth 3.5 mm) configured in a concentric shape with alternate flow passages (slot of 3 mm gap). In this study, the cooling performance of the heat sink was tested under simulated controlled conditions.The lower bottom surface of the heat sink was heated at a constant heat flux condition based on dissipated power of 50 W and 70 W. The computations were carried out for different volume fractions of nanoparticles, namely 0.5\% to 5\%, and water as base fluid at a flow rate of 30 to 180 mL/min. The results showed a higher rate of heat rejection from the nanofluid cooled heat sink compared with water. The enhancement in performance was analyzed with the help of a temperature difference of nanofluid outlet temperature and water outlet temperature under similar operating conditions. The enhancement was ~2\% for 0.5\% volume fraction nanofluids and ~17\% for a 5\% volume fraction.}, subject = {Nanostrukturiertes Material}, language = {en} } @article{FaroughiKarimimoshaverArametal., author = {Faroughi, Maryam and Karimimoshaver, Mehrdad and Aram, Farshid and Solgi, Ebrahim and Mosavi, Amir and Nabipour, Narjes and Chau, Kwok-Wing}, title = {Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, No. 1}, publisher = {Taylor \& Francis}, doi = {https://doi.org/10.1080/19942060.2019.1707711}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200110-40585}, pages = {254 -- 270}, abstract = {The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively.}, subject = {Fernerkung}, language = {en} } @phdthesis{AbuBakar, author = {Abu Bakar, Ilyani Akmar}, title = {Computational Analysis of Woven Fabric Composites: Single- and Multi-Objective Optimizations and Sensitivity Analysis in Meso-scale Structures}, issn = {1610-7381}, doi = {10.25643/bauhaus-universitaet.4176}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200605-41762}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {151}, abstract = {This study permits a reliability analysis to solve the mechanical behaviour issues existing in the current structural design of fabric structures. Purely predictive material models are highly desirable to facilitate an optimized design scheme and to significantly reduce time and cost at the design stage, such as experimental characterization. The present study examined the role of three major tasks; a) single-objective optimization, b) sensitivity analyses and c) multi-objective optimization on proposed weave structures for woven fabric composites. For single-objective optimization task, the first goal is to optimize the elastic properties of proposed complex weave structure under unit cells basis based on periodic boundary conditions. We predict the geometric characteristics towards skewness of woven fabric composites via Evolutionary Algorithm (EA) and a parametric study. We also demonstrate the effect of complex weave structures on the fray tendency in woven fabric composites via tightness evaluation. We utilize a procedure which does not require a numerical averaging process for evaluating the elastic properties of woven fabric composites. The fray tendency and skewness of woven fabrics depends upon the behaviour of the floats which is related to the factor of weave. Results of this study may suggest a broader view for further research into the effects of complex weave structures or may provide an alternative to the fray and skewness problems of current weave structure in woven fabric composites. A comprehensive study is developed on the complex weave structure model which adopts the dry woven fabric of the most potential pattern in singleobjective optimization incorporating the uncertainties parameters of woven fabric composites. The comprehensive study covers the regression-based and variance-based sensitivity analyses. The second task goal is to introduce the fabric uncertainties parameters and elaborate how they can be incorporated into finite element models on macroscopic material parameters such as elastic modulus and shear modulus of dry woven fabric subjected to uni-axial and biaxial deformations. Significant correlations in the study, would indicate the need for a thorough investigation of woven fabric composites under uncertainties parameters. The study describes here could serve as an alternative to identify effective material properties without prolonged time consumption and expensive experimental tests. The last part focuses on a hierarchical stochastic multi-scale optimization approach (fine-scale and coarse-scale optimizations) under geometrical uncertainties parameters for hybrid composites considering complex weave structure. The fine-scale optimization is to determine the best lamina pattern that maximizes its macroscopic elastic properties, conducted by EA under the following uncertain mesoscopic parameters: yarn spacing, yarn height, yarn width and misalignment of yarn angle. The coarse-scale optimization has been carried out to optimize the stacking sequences of symmetric hybrid laminated composite plate with uncertain mesoscopic parameters by employing the Ant Colony Algorithm (ACO). The objective functions of the coarse-scale optimization are to minimize the cost (C) and weight (W) of the hybrid laminated composite plate considering the fundamental frequency and the buckling load factor as the design constraints. Based on the uncertainty criteria of the design parameters, the appropriate variation required for the structural design standards can be evaluated using the reliability tool, and then an optimized design decision in consideration of cost can be subsequently determined.}, subject = {Verbundwerkstoff}, language = {en} } @article{MosaviShamshirbandEsmaeilbeikietal., author = {Mosavi, Amir and Shamshirband, Shahaboddin and Esmaeilbeiki, Fatemeh and Zarehaghi, Davoud and Neyshabouri, Mohammadreza and Samadianfard, Saeed and Ghorbani, Mohammad Ali and Nabipour, Narjes and Chau, Kwok-Wing}, title = {Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, Issue 1}, doi = {10.1080/19942060.2020.1788644}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200911-42347}, pages = {939 -- 953}, abstract = {This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013-2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models.}, subject = {Bodentemperatur}, language = {en} } @article{BandJanizadehChandraPaletal., author = {Band, Shahab S. and Janizadeh, Saeid and Chandra Pal, Subodh and Chowdhuri, Indrajit and Siabi, Zhaleh and Norouzi, Akbar and Melesse, Assefa M. and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration}, series = {Sensors}, volume = {2020}, journal = {Sensors}, number = {Volume 20, issue 20, article 5763}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s20205763}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43364}, pages = {1 -- 23}, abstract = {Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70\%) and testing (30\%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.}, subject = {Grundwasser}, language = {en} } @phdthesis{RadmardRahmani, author = {Radmard Rahmani, Hamid}, title = {Artificial Intelligence Approach for Seismic Control of Structures}, doi = {10.25643/bauhaus-universitaet.4135}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200417-41359}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Abstract In the first part of this research, the utilization of tuned mass dampers in the vibration control of tall buildings during earthquake excitations is studied. The main issues such as optimizing the parameters of the dampers and studying the effects of frequency content of the target earthquakes are addressed. Abstract The non-dominated sorting genetic algorithm method is improved by upgrading generic operators, and is utilized to develop a framework for determining the optimum placement and parameters of dampers in tall buildings. A case study is presented in which the optimal placement and properties of dampers are determined for a model of a tall building under different earthquake excitations through computer simulations. Abstract In the second part, a novel framework for the brain learning-based intelligent seismic control of smart structures is developed. In this approach, a deep neural network learns how to improve structural responses during earthquake excitations using feedback control. Abstract Reinforcement learning method is improved and utilized to develop a framework for training the deep neural network as an intelligent controller. The efficiency of the developed framework is examined through two case studies including a single-degree-of-freedom system and a high-rise building under different earthquake excitation records. Abstract The results show that the controller gradually develops an optimum control policy to reduce the vibrations of a structure under an earthquake excitation through a cyclical process of actions and observations. Abstract It is shown that the controller efficiently improves the structural responses under new earthquake excitations for which it was not trained. Moreover, it is shown that the controller has a stable performance under uncertainties.}, subject = {Erdbeben}, language = {en} } @article{HarirchianLahmerKumarietal., author = {Harirchian, Ehsan and Lahmer, Tom and Kumari, Vandana and Jadhav, Kirti}, title = {Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings}, series = {Energies}, volume = {2020}, journal = {Energies}, number = {volume 13, issue 13, 3340}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en13133340}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200707-41915}, pages = {15}, abstract = {The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 D{\"u}zce Earthquake in Turkey, where the building's data consists of 22 performance modifiers that have been implemented with supervised machine learning.}, subject = {Erdbeben}, language = {en} } @phdthesis{Oucif, author = {Oucif, Chahmi}, title = {Analytical Modeling of Self-Healing and Super Healing in Cementitious Materials}, doi = {10.25643/bauhaus-universitaet.4229}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200831-42296}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {208}, abstract = {Self-healing materials have recently become more popular due to their capability to autonomously and autogenously repair the damage in cementitious materials. The concept of self-healing gives the damaged material the ability to recover its stiffness. This gives a difference in comparing with a material that is not subjected to healing. Once this material is damaged, it cannot sustain loading due to the stiffness degradation. Numerical modeling of self-healing materials is still in its infancy. Multiple experimental researches were conducted in literature to describe the behavior of self-healing of cementitious materials. However, few numerical investigations were undertaken. The thesis presents an analytical framework of self-healing and super healing materials based on continuum damage-healing mechanics. Through this framework, we aim to describe the recovery and strengthening of material stiffness and strength. A simple damage healing law is proposed and applied on concrete material. The proposed damage-healing law is based on a new time-dependent healing variable. The damage-healing model is applied on isotropic concrete material at the macroscale under tensile load. Both autonomous and autogenous self-healing mechanisms are simulated under different loading conditions. These two mechanisms are denoted in the present work by coupled and uncoupled self-healing mechanisms, respectively. We assume in the coupled self-healing that the healing occurs at the same time with damage evolution, while we assume in the uncoupled self-healing that the healing occurs when the material is deformed and subjected to a rest period (damage is constant). In order to describe both coupled and uncoupled healing mechanisms, a one-dimensional element is subjected to different types of loading history. In the same context, derivation of nonlinear self-healing theory is given, and comparison of linear and nonlinear damage-healing models is carried out using both coupled and uncoupled self-healing mechanisms. The nonlinear healing theory includes generalized nonlinear and quadratic healing models. The healing efficiency is studied by varying the values of the healing rest period and the parameter describing the material characteristics. In addition, theoretical formulation of different self-healing variables is presented for both isotropic and anisotropic maerials. The healing variables are defined based on the recovery in elastic modulus, shear modulus, Poisson's ratio, and bulk modulus. The evolution of the healing variable calculated based on cross-section as function of the healing variable calculated based on elastic stiffness is presented in both hypotheses of elastic strain equivalence and elastic energy equivalence. The components of the fourth-rank healing tensor are also obtained in the case of isotropic elasticity, plane stress and plane strain. Recent research revealed that self-healing presents a crucial solution also for the strengthening of the materials. This new concept has been termed ``Super Healing``. Once the stiffness of the material is recovered, further healing can result as a strengthening material. In the present thesis, new theory of super healing materials is defined in isotropic and anisotropic cases using sound mathematical and mechanical principles which are applied in linear and nonlinear super healing theories. Additionally, the link of the proposed theory with the theory of undamageable materials is outlined. In order to describe the super healing efficiency in linear and nonlinear theories, the ratio of effective stress to nominal stress is calculated as function of the super healing variable. In addition, the hypotheses of elastic strain and elastic energy equivalence are applied. In the same context, new super healing matrix in plane strain is proposed based on continuum damage-healing mechanics. In the present work, we also focus on numerical modeling of impact behavior of reinforced concrete slabs using the commercial finite element package Abaqus/Explicit. Plain and reinforced concrete slabs of unconfined compressive strength 41 MPa are simulated under impact of ogive-nosed hard projectile. The constitutive material modeling of the concrete and steel reinforcement bars is performed using the Johnson-Holmquist-2 damage and the Johnson-Cook plasticity material models, respectively. Damage diameters and residual velocities obtained by the numerical model are compared with the experimental results and effect of steel reinforcement and projectile diameter is studied.}, subject = {Schaden}, language = {en} } @article{HomaeiSoleimaniShamshirbandetal., author = {Homaei, Mohammad Hossein and Soleimani, Faezeh and Shamshirband, Shahaboddin and Mosavi, Amir and Nabipour, Narjes and Varkonyi-Koczy, Annamaria R.}, title = {An Enhanced Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System}, series = {IEEE Access}, journal = {IEEE Access}, number = {volume 8}, publisher = {IEEE}, doi = {10.1109/ACCESS.2020.2968524}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40805}, pages = {20628 -- 20645}, abstract = {The classical Internet of things routing and wireless sensor networks can provide more precise monitoring of the covered area due to the higher number of utilized nodes. Because of the limitations in shared transfer media, many nodes in the network are prone to the collision in simultaneous transmissions. Medium access control protocols are usually more practical in networks with low traffic, which are not subjected to external noise from adjacent frequencies. There are preventive, detection and control solutions to congestion management in the network which are all the focus of this study. In the congestion prevention phase, the proposed method chooses the next step of the path using the Fuzzy decision-making system to distribute network traffic via optimal paths. In the congestion detection phase, a dynamic approach to queue management was designed to detect congestion in the least amount of time and prevent the collision. In the congestion control phase, the back-pressure method was used based on the quality of the queue to decrease the probability of linking in the pathway from the pre-congested node. The main goals of this study are to balance energy consumption in network nodes, reducing the rate of lost packets and increasing quality of service in routing. Simulation results proved the proposed Congestion Control Fuzzy Decision Making (CCFDM) method was more capable in improving routing parameters as compared to recent algorithms.}, subject = {Internet der dinge}, language = {en} } @phdthesis{Winkel, author = {Winkel, Benjamin}, title = {A three-dimensional model of skeletal muscle for physiological, pathological and experimental mechanical simulations}, doi = {10.25643/bauhaus-universitaet.4300}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201211-43002}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {In recent decades, a multitude of concepts and models were developed to understand, assess and predict muscular mechanics in the context of physiological and pathological events. Most of these models are highly specialized and designed to selectively address fields in, e.g., medicine, sports science, forensics, product design or CGI; their data are often not transferable to other ranges of application. A single universal model, which covers the details of biochemical and neural processes, as well as the development of internal and external force and motion patterns and appearance could not be practical with regard to the diversity of the questions to be investigated and the task to find answers efficiently. With reasonable limitations though, a generalized approach is feasible. The objective of the work at hand was to develop a model for muscle simulation which covers the phenomenological aspects, and thus is universally applicable in domains where up until now specialized models were utilized. This includes investigations on active and passive motion, structural interaction of muscles within the body and with external elements, for example in crash scenarios, but also research topics like the verification of in vivo experiments and parameter identification. For this purpose, elements for the simulation of incompressible deformations were studied, adapted and implemented into the finite element code SLang. Various anisotropic, visco-elastic muscle models were developed or enhanced. The applicability was demonstrated on the base of several examples, and a general base for the implementation of further material models was developed and elaborated.}, subject = {Biomechanik}, language = {en} } @article{SaadatfarKhosraviHassannatajJoloudarietal., author = {Saadatfar, Hamid and Khosravi, Samiyeh and Hassannataj Joloudari, Javad and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 2, article 286}, publisher = {MDPI}, doi = {10.3390/math8020286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200225-40996}, pages = {12}, abstract = {The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.}, subject = {Maschinelles Lernen}, language = {en} } @article{KarimimoshaverHajivalieiShokrietal., author = {Karimimoshaver, Mehrdad and Hajivaliei, Hatameh and Shokri, Manouchehr and Khalesro, Shakila and Aram, Farshid and Shamshirband, Shahaboddin}, title = {A Model for Locating Tall Buildings through a Visual Analysis Approach}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 17, article 6072}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10176072}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43350}, pages = {1 -- 25}, abstract = {Tall buildings have become an integral part of cities despite all their pros and cons. Some current tall buildings have several problems because of their unsuitable location; the problems include increasing density, imposing traffic on urban thoroughfares, blocking view corridors, etc. Some of these buildings have destroyed desirable views of the city. In this research, different criteria have been chosen, such as environment, access, social-economic, land-use, and physical context. These criteria and sub-criteria are prioritized and weighted by the analytic network process (ANP) based on experts' opinions, using Super Decisions V2.8 software. On the other hand, layers corresponding to sub-criteria were made in ArcGIS 10.3 simultaneously, then via a weighted overlay (map algebra), a locating plan was created. In the next step seven hypothetical tall buildings (20 stories), in the best part of the locating plan, were considered to evaluate how much of theses hypothetical buildings would be visible (fuzzy visibility) from the street and open spaces throughout the city. These processes have been modeled by MATLAB software, and the final fuzzy visibility plan was created by ArcGIS. Fuzzy visibility results can help city managers and planners to choose which location is suitable for a tall building and how much visibility may be appropriate. The proposed model can locate tall buildings based on technical and visual criteria in the future development of the city and it can be widely used in any city as long as the criteria and weights are localized.}, subject = {Geb{\"a}ude}, language = {en} } @article{HarirchianKumariJadhavetal., author = {Harirchian, Ehsan and Kumari, Vandana and Jadhav, Kirti and Raj Das, Rohan and Rasulzade, Shahla and Lahmer, Tom}, title = {A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7153}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207153}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42744}, pages = {18}, abstract = {Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure's performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building's behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings.}, subject = {Erdbeben}, language = {en} } @article{HarirchianJadhavMohammadetal., author = {Harirchian, Ehsan and Jadhav, Kirti and Mohammad, Kifaytullah and Aghakouchaki Hosseini, Seyed Ehsan and Lahmer, Tom}, title = {A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 18, article 6411}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10186411}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200918-42360}, pages = {24}, abstract = {Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared.}, subject = {Erdbebensicherheit}, language = {en} } @article{AbbaspourGilandehMolaeeSabzietal., author = {Abbaspour-Gilandeh, Yousef and Molaee, Amir and Sabzi, Sajad and Nabipour, Narjes and Shamshirband, Shahaboddin and Mosavi, Amir}, title = {A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars}, series = {agronomy}, volume = {2020}, journal = {agronomy}, number = {Volume 10, Issue 1, 117}, publisher = {MDPI}, doi = {10.3390/agronomy10010117}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200123-40695}, pages = {21}, abstract = {Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2\%, 87.7\%, and 83.1\%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100\% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.}, subject = {Maschinelles Lernen}, language = {en} }