@inproceedings{MaWongYang2004, author = {Ma, Zhiliang and Wong, K. D. and Yang, Jun}, title = {An Approach to Utilizing Exchanged Documents in Construction Projects Based on Data Warehouse Technology}, doi = {10.25643/bauhaus-universitaet.122}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1227}, year = {2004}, abstract = {There are many construction projects in China and mass documents are exchanged among the multi-party, including the owner, the contractor and the engineer in the projects. Based on previous studies, an approach to the utilization of the exchanged documents is established by using data warehouse technology and a prototype system called EXPLYZER is developed. The approach and the prototype system are verified through their application in a construction project. It is concluded that the approach can support the decision-making in project management.}, subject = {Bauwerk}, language = {en} } @article{KangMiranda2004, author = {Kang, Shihchung and Miranda, Eduardo}, title = {Automated Simulation of the Erection Activities in Virtual Construction}, doi = {10.25643/bauhaus-universitaet.231}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2310}, year = {2004}, abstract = {The goal of the research is the development of a computer system to plan, simulate and visualize erection processes in construction. In the research construction cranes are treated as robots with predefined degrees of freedom and crane-specific motion planning techniques are developed to generate time-optimized and collision-free paths for each piece to be erected in the project. Using inverse kinematics and structural dynamics simulation, the computer system then computes the crane motions and velocities necessary to achieve the previously calculated paths. The main benefits of the research are the accurate planning and scheduling of crane operations leading to optimization of crane usage and project schedules, as well as improving overall crane safety in the project. This research is aimed at the development of systems that will allow computer-assisted erection of civil infrastructure and ultimately to achieve fully-automated erection processes using robotic cranes...}, subject = {Produktmodell}, language = {en} } @article{NeubergFankEkkerlein2004, author = {Neuberg, Frank and Fank, Ernst and Ekkerlein, Christian}, title = {Integrated Life Cycle Simulation and Assessment of Buildings}, doi = {10.25643/bauhaus-universitaet.235}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2351}, year = {2004}, abstract = {Buildings require both for construction and, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. So far available knowledge about resource consumption during an entire life cycle of a building is still quite rare, because various criteria affect each other and/or overlay mutually. In this contribution a model based software concept is presented using an integrated approach for life cycle simulation and assessment of buildings. The essential point of the development consists of connecting an IFC compliant product model of a building via the Internet with data bases for the resource and energy requirement of building materials. Furthermore, numerical simulations allow calculating and minimizing the energy consumption, the resource requirement, the waste streams and also the noxious emissions. In the context of this paper we present the first release of software programs for architects and engineers, which help them to evaluate their design decisions objectively in early planning steps. Additionally the usage of the software is demonstrated by a test case study for a real world building. By applying this software in practice a substantial contribution for saving energy and natural resources can be provided in the sense of sustainable and ecological building design.}, subject = {Produktmodell}, language = {en} } @inproceedings{GebbekenBaumhauerIonita2004, author = {Gebbeken, Norbert and Baumhauer, Andreas and Ionita, Mihai}, title = {Increasing the Reliability and Performance through Automatization and Parallel Working}, doi = {10.25643/bauhaus-universitaet.139}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1397}, year = {2004}, abstract = {Re-examination of the behaviour of structures can be necessary due to deterioration or changes in the traffic situation during their lifetime. The Finite Element Method (FEM) is widely used in order to accomplish numerical analysis. Considering the development of computer performance, more detailed FEM models can be analyzed, even on site, with mobile computers. To compensate the increasing amount of data needed for the model input, measures need to be taken to save time, by distributing the work. In order to provide consistency to the model, fedback data must be checked upon reception. A local wireless computer network of ultra-portable devices linked together with a computer can provide the coordination necessary for efficient parallel working. Based on a digital model consisting of all data gathered, structural modelling and numerical analysis are performed automatically. Thus, the user is released from the work that can be automatized and the time needed for the overall analysis of a structure is decreased.}, subject = {Ingenieurbau}, language = {en} } @article{SemenovAlekseevaTarlapan2004, author = {Semenov, Vitaly and Alekseeva, Elena and Tarlapan, Oleg}, title = {Virtual Construction using Map-based Approach}, doi = {10.25643/bauhaus-universitaet.244}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2447}, year = {2004}, abstract = {The paper presents a general map-based approach to prototyping of products in virtual reality environments. Virtual prototyping of products is considered as a consistent simulation and visualization process mapping the source product model into its target visual representations. The approach enables to interrelate formally the product and visual information models with each other by defining mapping rules, to specify a prototyping scenario as a composition of map instances, and then to explore particular product models in virtual reality environments by interpreting the composed scenario. Having been realized, the proposed approach provides for the strongly formalized method and the common software framework to build virtual prototyping applications. As a result, the applications gain in expressiveness, reusability and reliability, as well as take on additional runtime flexibility...}, subject = {Produktmodell}, language = {en} } @article{KiviniemiFischer2004, author = {Kiviniemi, Arto and Fischer, Martin}, title = {Requirements Management Interface to Building Product Models}, doi = {10.25643/bauhaus-universitaet.242}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2427}, year = {2004}, abstract = {In current AEC practice client requirements are typically recorded in a building program, which, depending on the building type, covers various aspects from the overall goals, activities and spatial needs to very detailed material and condition requirements. This documentation is used as the starting point of the design process, but as the design progresses, it is usually left aside and changes are made incrementally based on the previous design solution. These incremental small changes can lead to a solution that may no longer meet the original requirements. In addition, design is by nature an iterative process and the proposed solutions often also cause evolution in the client requirements. However, the requirements documentation is usually not updated accordingly. Finding the latest updates and evolution of the requirements from the documentation is very difficult, if not impossible. This process can lead to an end result, which is significantly different from the documented requirements. Some important requirements may not be satisfied, and even if the design process was based on agreed-upon changes in the scope and requirements, differences in the requirements documents and in the completed building can lead to well-justified doubts about the quality of the design and construction process...}, subject = {Produktmodell}, language = {en} } @article{KangMiranda2004, author = {Kang, Shihchung and Miranda, Eduardo}, title = {Physics Based Model for Simulating the Dynamics of Tower Cranes}, doi = {10.25643/bauhaus-universitaet.240}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2409}, year = {2004}, abstract = {The goal of the research is to increase the understanding of dynamic behaviors during the crane operation, and develops computer-aided methods to improve the training of crane operators. There are approximately 125,000 cranes in operation today in the construction industry, responsible for major portion of erection activities. Unfortunately, many accidents occur every year in the U.S. and other countries related to the operation of cranes in construction sites. For example on November 28, 1989 a tower crane collapse during the construction of a building in San Francisco killing four construction workers, one civilian and injuring 28. According to the statistics from Occupational Safety Health Administration (OSHA), there were 137 crane-related fatalities from 1992 to 2001 in the US. A well-known internet website that keeps track of crane-related accidents (craneaccidents.com), reports 516 accidents and 277 fatalities from 2000 to 2002. These statistics show that even though many measures have been taken to decrease the number of crane-related accidents (Braam, 2002), the number of crane related accidents is still very large. It is important to recognize that each construction related fatality is not only a great human loss but also increases the costs of insurance, lawsuits, and the construction budget due to delay of a project (Paulson 1992)...}, subject = {Produktmodell}, language = {en} } @article{HoltzhauerSaal2004, author = {Holtzhauer, Eric and Saal, Helmut}, title = {Product modelling in the steel construction domain}, doi = {10.25643/bauhaus-universitaet.241}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2415}, year = {2004}, abstract = {The complexity of the relationships between the actors of a building project requires high efficiency in communication. Among other things, data sharing is crucial. The exchange of data is made possible by interfaces between expert programs, which rely on product models. The latter are neutral standards with formal definitions of building objects and their attributes. This paper deals with the state of the art and the research activities concerning product models in the steel construction domain and the advantages provided by this technology for the sector.}, subject = {Produktmodell}, language = {en} } @article{Rose2004, author = {Rose, Martin}, title = {Modeling of Freeway Traffic}, doi = {10.25643/bauhaus-universitaet.263}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2639}, year = {2004}, abstract = {An integrated modeling of freeway traffic is developed, whose implementation in an uniform computer -aided simulation model facilitate comparative evaluation and systematic coupling of several traffic simulations, traffic controls, traffic measurements and traffic scenarios. The integrated modeling of freeway traffic is a basic mapping of freeway networks, control methods, measurements and different simulations of traffic flow...}, subject = {Verkehrsplanung}, language = {en} } @article{ShihLee2004, author = {Shih, Naai-Jung and Lee, Wen-Pang}, title = {Particle Simulation and Evaluation of Personal Exposure to Contaminant Sources in an Elevation Space}, doi = {10.25643/bauhaus-universitaet.237}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2376}, year = {2004}, abstract = {An elevator, which figures a small volume, is normally used by everyone for a short period of time and equipped with simple ventilation system..Any contaminant released within it may cause serious problem. This research adapt a fire and smoke simulation software (FDS) into non-fire indoor airflow scario. Differently from previous research, particles are chosen as a risk evalution unit. A personal and multi-personal exposure model is proposed. The model takes the influence of the human thermal boundary, coughing, inhalation, exhalation, standing position, and the fan factor into account. The model is easy-to-use and suitable for the design of elevator system in practice.}, subject = {Produktmodell}, language = {en} }