@phdthesis{Hartmann, author = {Hartmann, Veronika}, title = {Methoden zur Quantifizierung und Optimierung der Robustheit von Bauablaufpl{\"a}nen}, doi = {10.25643/bauhaus-universitaet.4579}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220204-45798}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Bauablaufpl{\"a}nen kommt bei der Realisierung von Bauprojekten eine zentrale Rolle zu. Sie dienen der Koordination von Schnittstellen und bilden f{\"u}r die am Projekt Beteiligten die Grundlage f{\"u}r ihre individuelle Planung. Eine verl{\"a}ssliche Terminplanung ist daher von großer Bedeutung, tats{\"a}chlich sind aber gerade Bauablaufpl{\"a}ne f{\"u}r ihre Unzuverl{\"a}ssigkeit bekannt. Aufgrund der langen Vorlaufzeiten bei der Planung von Bauprojekten sind zum Zeitpunkt der Planung viele Informationen nur als Sch{\"a}tzwerte bekannt. Auf der Grundlage dieser gesch{\"a}tzten und damit mit Unsicherheiten behafteten Daten werden im Bauwesen deterministische Terminpl{\"a}ne erstellt. Kommt es w{\"a}hrend der Realisierung zu Diskrepanzen zwischen Sch{\"a}tzungen und Realit{\"a}t, erfordert dies die Anpassung der Pl{\"a}ne. Aufgrund zahlreicher Abh{\"a}ngigkeiten zwischen den geplanten Aktivit{\"a}ten k{\"o}nnen einzelne Plan{\"a}nderungen vielf{\"a}ltige weitere {\"A}nderungen und Anpassungen nach sich ziehen und damit einen reibungslosen Projektablauf gef{\"a}hrden. In dieser Arbeit wird ein Vorgehen entwickelt, welches Bauablaufpl{\"a}ne erzeugt, die im Rahmen der durch das Projekt definierten Abh{\"a}ngigkeiten und Randbedingungen in der Lage sind, {\"A}nderungen m{\"o}glichst gut zu absorbieren. Solche Pl{\"a}ne, die bei auftretenden {\"A}nderungen vergleichsweise geringe Anpassungen des Terminplans erfordern, werden hier als robust bezeichnet. Ausgehend von Verfahren der Projektplanung und Methoden zur Ber{\"u}cksichtigung von Unsicherheiten werden deterministische Terminpl{\"a}ne bez{\"u}glich ihres Verhaltens bei eintretenden {\"A}nderungen betrachtet. Hierf{\"u}r werden zun{\"a}chst m{\"o}gliche Unsicherheiten als Ursachen f{\"u}r {\"A}nderungen benannt und mathematisch abgebildet. Damit kann das Verhalten von Abl{\"a}ufen f{\"u}r m{\"o}gliche {\"A}nderungen betrachtet werden, indem die durch {\"A}nderungen erzwungenen angepassten Terminpl{\"a}ne simuliert werden. F{\"u}r diese Monte-Carlo-Simulationen der angepassten Terminpl{\"a}ne wird sichergestellt, dass die angepassten Terminpl{\"a}ne logische Weiterentwicklungen des deterministischen Terminplans darstellen. Auf der Grundlage dieser Untersuchungen wird ein stochastisches Maß zur Quantifizierung der Robustheit erarbeitet, welches die F{\"a}higkeit eines Planes, {\"A}nderungen zu absorbieren, beschreibt. Damit ist es m{\"o}glich, Terminpl{\"a}ne bez{\"u}glich ihrer Robustheit zu vergleichen. Das entwickelte Verfahren zur Quantifizierung der Robustheit wird in einem Optimierungsverfahren auf Basis Genetischer Algorithmen angewendet, um gezielt robuste Terminpl{\"a}ne zu erzeugen. An Beispielen werden die Methoden demonstriert und ihre Wirksamkeit nachgewiesen.}, subject = {Bauablaufplanung}, language = {de} } @inproceedings{IgnatovaKirschkeTauscheretal., author = {Ignatova, Elena and Kirschke, Heiko and Tauscher, Eike and Smarsly, Kay}, title = {PARAMETRIC GEOMETRIC MODELING IN CONSTRUCTION PLANNING USING INDUSTRY FOUNDATION CLASSES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2802}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28024}, pages = {8}, abstract = {One of the most promising and recent advances in computer-based planning is the transition from classical geometric modeling to building information modeling (BIM). Building information models support the representation, storage, and exchange of various information relevant to construction planning. This information can be used for describing, e.g., geometric/physical properties or costs of a building, for creating construction schedules, or for representing other characteristics of construction projects. Based on this information, plans and specifications as well as reports and presentations of a planned building can be created automatically. A fundamental principle of BIM is object parameterization, which allows specifying geometrical, numerical, algebraic and associative dependencies between objects contained in a building information model. In this paper, existing challenges of parametric modeling using the Industry Foundation Classes (IFC) as a federated model for integrated planning are shown, and open research questions are discussed.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SmarslyTauscher, author = {Smarsly, Kay and Tauscher, Eike}, title = {IFC-BASED MONITORING INFORMATION MODELING FOR DATA MANAGEMENT IN STRUCTURAL HEALTH MONITORING}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2823}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28237}, pages = {7}, abstract = {This conceptual paper discusses opportunities and challenges towards the digital representation of structural health monitoring systems using the Industry Foundation Classes (IFC) standard. State-of-the-art sensor nodes, collecting structural and environmental data from civil infrastructure systems, are capable of processing and analyzing the data sets directly on-board the nodes. Structural health monitoring (SHM) based on sensor nodes that possess so called "on-chip intelligence" is, in this study, referred to as "intelligent SHM", and the infrastructure system being equipped with an intelligent SHM system is referred to as "intelligent infrastructure". Although intelligent SHM will continue to grow, it is not possible, on a well-defined formalism, to digitally represent information about sensors, about the overall SHM system, and about the monitoring strategies being implemented ("monitoring-related information"). Based on a review of available SHM regulations and guidelines as well as existing sensor models and sensor modeling languages, this conceptual paper investigates how to digitally represent monitoring-related information in a semantic model. With the Industry Foundation Classes, there exists an open standard for the digital representation of building information; however, it is not possible to represent monitoring-related information using the IFC object model. This paper proposes a conceptual approach for extending the current IFC object model in order to include monitoring-related information. Taking civil infrastructure systems as an illustrative example, it becomes possible to adequately represent, process, and exchange monitoring-related information throughout the whole life cycle of civil infrastructure systems, which is referred to as monitoring information modeling (MIM). However, since this paper is conceptual, additional research efforts are required to further investigate, implement, and validate the proposed concepts and methods.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{OPUS4-2451, title = {International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2451}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150828-24515}, pages = {230}, abstract = {The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{HartmannSmarslyLahmer, author = {Hartmann, Veronika and Smarsly, Kay and Lahmer, Tom}, title = {ROBUST SCHEDULING IN CONSTRUCTION ENGINEERING}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2799}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27994}, pages = {5}, abstract = {In construction engineering, a schedule's input data, which is usually not exactly known in the planning phase, is considered deterministic when generating the schedule. As a result, construction schedules become unreliable and deadlines are often not met. While the optimization of construction schedules with respect to costs and makespan has been a matter of research in the past decades, the optimization of the robustness of construction schedules has received little attention. In this paper, the effects of uncertainties inherent to the input data of construction schedules are discussed. Possibilities are investigated to improve the reliability of construction schedules by considering alternative processes for certain tasks and by identifying the combination of processes generating the most robust schedule with respect to the makespan of a construction project.}, subject = {Angewandte Informatik}, language = {en} } @phdthesis{Richter2009, author = {Richter, Torsten}, title = {Konzepte f{\"u}r den Einsatz versionierter Objektmodelle im Bauwesen}, doi = {10.25643/bauhaus-universitaet.1413}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100115-14935}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2009}, abstract = {Bauwerke sind in der Regel Unikate, f{\"u}r die meist eine komplette und aufw{\"a}ndige Neuplanung durchzuf{\"u}hren ist. Der Umfang und die Verschiedenartigkeit der einzelnen Planungsaufgaben bedingen ein paralleles Arbeiten der beteiligten Fachplaner. Dar{\"u}ber hinaus ist die Bauplanung ein kreativer und iterativer Prozess, der durch h{\"a}ufige {\"A}nderungen des Planungsmaterials und Abstimmungen zwischen den Fachplanern gekennzeichnet ist. Mithilfe von speziellen Fachanwendungen erstellen die Planungsbeteiligten verschiedene Datenmodelle, zwischen denen fachliche Abh{\"a}ngigkeiten bestehen. Ziel der Arbeit ist es, die Konsistenz der einzelnen Fachmodelle eines Bauwerks sicherzustellen, indem Abh{\"a}ngigkeiten auf Basis von Objektversionen definiert werden. Voraussetzung daf{\"u}r ist, dass die Fachanwendungen nach dem etablierten Paradigma der objektorientierten Programmierung entwickelt wurden. Das sequentielle und parallele Arbeiten mehrerer Fachplaner wird auf Basis eines optimistischen Zugriffsmodells unterst{\"u}tzt, das ohne Schreibsperren auskommt. Weiterhin wird die Historie des Planungsmaterials gespeichert und die Definition von rechtsverbindlichen Freigabest{\"a}nden erm{\"o}glicht. Als Vorbild f{\"u}r die Systemarchitektur diente das Softwarekonfigurationsmanagement, dessen Versionierungsansatz meist auf einem Client-Server-Modell beruht. Die formale Beschreibung des verwendeten Ansatzes wird {\"u}ber die Mengenlehre und Relationenalgebra vorgenommen, so dass er allgemeing{\"u}ltig und technologieunabh{\"a}ngig ist. Auf Grundlage dieses Ansatzes werden Konzepte f{\"u}r den Einsatz versionierter Objektmodelle im Bauwesen erarbeitet und mit einer Pilotimplementierung basierend auf einer Open-Source-Ingenieurplattform an einem praxisnahen Szenario verifiziert. Beim Entwurf der Konzepte wird besonderer Wert auf die Handhabbarkeit der Umsetzung gelegt. Das betrifft im Besonderen die hierarchische Strukturierung des Projektmaterials, die ergonomische Gestaltung der Benutzerschnittstellen und der Erzielung von geringen Anwortzeiten. Diese Aspekte sind eine wichtige Voraussetzung f{\"u}r die Effizienz und Akzeptanz von Software im praktischen Einsatz. Bestehende Fachanwendungen k{\"o}nnen durch geringen Entwicklungsaufwand einfach in die verteilte Umgebung integriert werden, ohne sie von Grund auf programmieren zu m{\"u}ssen.}, subject = {Computer Supported Cooperative Work}, language = {de} } @phdthesis{Tulke2009, author = {Tulke, Jan}, title = {Kollaborative Terminplanung auf Basis von Bauwerksinformationsmodellen}, isbn = {978-3-86068-416-0}, doi = {10.25643/bauhaus-universitaet.1424}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100805-15135}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2009}, abstract = {Im Rahmen des sich derzeit vollziehenden Wandels von der segmentierten, zeichnungsorientierten zur integrierten, modellbasierten Arbeitsweise bei der Planung von Bauwerken und ihrer Erstellung werden Computermodelle nicht mehr nur f{\"u}r die physikalische Simulation des Bauwerksverhaltens, sondern auch zur Koordination zwischen den einzelnen Planungsdisziplinen und Projektbeteiligten genutzt. Die gemeinsame Erstellung und Nutzung dieses Modells zur virtuellen Abbildung des Bauwerks und seiner Erstellungsprozesse, das sog. Building Information Modeling (BIM), ist dabei zentraler Bestandteil der Planung. Die Integration der Terminplanung in diese Arbeitsweise erfolgt bisher jedoch nur unzureichend, meist lediglich in der Form einer nachgelagerten 4D-Simulation zur Kommunikation der Planungsergebnisse. Sie weist damit im Verh{\"a}ltnis zum entstehenden Zusatzaufwand einen zu geringen Nutzen f{\"u}r den Terminplaner auf. Gegenstand der vorliegenden Arbeit ist die tiefere Einbettung der Terminplanung in die modellbasierte Arbeitsweise. Auf Basis einer umfassende Analyse der Rahmenbedingungen und des Informationsbedarfs der Terminplanung werden Konzepte zur effizienten Wiederverwendung von im Modell gespeicherten Daten mit Hilfe einer Verkn{\"u}pfungssprache, zum umfassenden Datenaustausch auf Basis der Industry Foundation Classes (IFC) und f{\"u}r das {\"A}nderungsmanagement mittels einer Versionierung auf Objektebene entwickelt.Die f{\"u}r die modellbasierte Terminplanung relevanten Daten und ihre Beziehungen zueinander werden dabei formal beschrieben sowie die Kompatibilit{\"a}t ihrer Granularit{\"a}t durch eine Funktionalit{\"a}t zur Objektteilung sichergestellt. Zur zielgenauen Extraktion von Daten werden zudem Algorithmen f{\"u}r r{\"a}umliche Anfragen entwickelt. Die vorgestellten Konzepte und ihre Anwendbarkeit werden mittels einer umfangreichen Pilotimplementierung anhand von mehreren Praxisbeispielen demonstriert und somit deren praktische Relevanz und Nutzen nachgewiesen.}, subject = {Terminplanung}, language = {de} } @phdthesis{Beer2005, author = {Beer, Daniel G.}, title = {Systementwurf f{\"u}r verteilte Applikationen und Modelle im Bauplanungsprozess}, doi = {10.25643/bauhaus-universitaet.750}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20060418-7892}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2005}, abstract = {Der Planungsprozess im Konstruktiven Ingenieurbau ist gekennzeichnet durch drei sich zyklisch wiederholende Phasen: die Phase der Aufgabenverteilung, die Phase der parallelen Bearbeitung mit entsprechenden Abstimmungen und die Phase der Zusammenf{\"u}hrung der Ergebnisse. Die verf{\"u}gbare Planungssoftware unterst{\"u}tzt {\"u}berwiegend nur die Bearbeitung in der zweiten Phase und den Austausch der Datenbest{\"a}nde durch Dokumente. Gegenstand der Arbeit ist die Entwicklung einer Systemarchitektur, die in ihrem Grundsatz alle Phasen der verteilten Bearbeitung und unterschiedliche Arten der Kooperation (asynchron, parallel, wechselseitig) ber{\"u}cksichtigt und bestehende Anwendungen integriert. Das gemeinsame Arbeitsmaterial der Beteiligten wird nicht als Dokumentmenge, sondern als Menge von Objekt- und Elementversionen und deren Beziehungen abstrahiert. Elemente erweitern Objekte um applikationsunabh{\"a}ngige Eigenschaften (Features). F{\"u}r die Bearbeitung einer Aufgabe werden Teilmengen auf Basis der Features gebildet, f{\"u}r deren Elemente neue Versionen abgeleitet und in einen privaten Arbeitsbereich geladen werden. Die Bearbeitung wird auf Operationen zur{\"u}ckgef{\"u}hrt, mit denen das gemeinsame Arbeitsmaterial konsistent zu halten ist. Die Systemarchitektur wird formal mit Mitteln der Mathematik beschrieben, verf{\"u}gbare Technologie beschrieben und deren Einsatz in einem Umsetzungskonzept dargestellt. Das Umsetzungskonzept wird pilothaft implementiert. Dies erfolgt in der Umgebung des Internet in der Sprache Java unter Verwendung eines Versionsverwaltungswerkzeuges und relationalen Datenbanken.}, subject = {Planungsprozess}, language = {de} } @inproceedings{HauschildBorrmannHuebler2004, author = {Hauschild, Thomas and Borrmann, Andr{\´e} and H{\"u}bler, Reinhard}, title = {Integration of Constraints into Digital Building Models for Cooperative Planning Processes}, doi = {10.25643/bauhaus-universitaet.177}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1775}, year = {2004}, abstract = {The uniqueness and the long life cycle of buildings imply a dynamically modifiable building model. The technological foundation for the management of digital building models, a dynamic model management system (MMS), developed by our research group, allows to explicitly access and to modify the object model of the stored planning data. In this paper, the integration of constraints in digital building models will be shown. Constraints are conditions, which apply to the instances of domain model classes, and are defined by the user at runtime of the information system. For the expression of constraints, the Constraint Modelling Language (CML) has been developed and will be described in this paper. CML is a powerful, intuitively usable object-oriented language, which allows the expression of constraints at a high semantic level. A constrained-enabled MMS can verify, whether an instance fulfils the applying constraints. To ensure flexibility, the evaluation of constraints is not implicitly performed by the systems, but explicitly initiated by the user. A classification of constraint types and example usage scenarios are given.}, subject = {Architektur}, language = {en} } @inproceedings{SoibelmanO'BrienElvin2004, author = {Soibelman, Lucio and O'Brien, William and Elvin, George}, title = {Collaborative Design Processes: A Class on Concurrent Collaboration in Multidisciplinary Design}, doi = {10.25643/bauhaus-universitaet.194}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1948}, year = {2004}, abstract = {The rise of concurrent engineering in construction demands early team formation and constant communication throughout the project life cycle, but educational models in architecture, engineering and construction have been slow to adjust to this shift in project organization. Most students in these fields spend the majority of their college years working on individual projects that do not build teamwork or communication skills. Collaborative Design Processes (CDP) is a capstone design course where students from the University of Illinois at Urbana-Champaign and the University of Florida learn methods of collaborative design enhanced by the use of information technology. Students work in multidisciplinary teams to collaborate from remote locations via the Internet on the design of a facility. An innovation of this course compared to previous efforts is that students also develop process designs for the integration of technology into the work of multidisciplinary design teams. The course thus combines both active and reflective learning about collaborative design and methods. The course is designed to provide students the experience, tools, and methods needed to improve design processes and better integrate the use of technology into AEC industry work practices. This paper describes the goals, outcomes and significance of this new, interdisciplinary course for distributed AEC education. Differences from existing efforts and lessons learned to promote collaborative practices are discussed. Principal conclusions are that the course presents effective pedagogy to promote collaborative design methods, but faces challenges in both technology and in traditional intra-disciplinary training of students.}, subject = {Hochschulbildung}, language = {en} }