@article{Kalisch, author = {Kalisch, Dominik}, title = {Wissen wer wo wohnt}, doi = {10.25643/bauhaus-universitaet.2669}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26695}, abstract = {In cities people live together in neighbourhoods. Here they can find the infrastructure they need, starting with shops for the daily purpose to the life-cycle based infrastructures like kindergartens or nursing homes. But not all neighbourhoods are identical. The infrastructure mixture varies from neighbourhood to neighbourhood, but different people have different needs which can change e.g. based on the life cycle situation or their affiliation to a specific milieu. We can assume that a person or family tries to settle in a specific neighbourhood that satisfies their needs. So, if the residents are happy with a neighbourhood, we can further assume that this neighbourhood satisfies their needs. The socio-oeconomic panel (SOEP) of the German Institute for Economy (DIW) is a survey that investigates the economic structure of the German population. Every four years one part of this survey includes questions about what infrastructures can be found in the respondents neighbourhood and the satisfaction of the respondent with their neighbourhood. Further, it is possible to add a milieu estimation for each respondent or household. This gives us the possibility to analyse the typical neighbourhoods in German cities as well as the infrastructure profiles of the different milieus. Therefore, we take the environment variables from the dataset and recode them into a binary variable - whether an infrastructure is available or not. According to Faust (2005), these sets can also be understood, as a network of actors in a neighbourhood, which share two, three or more infrastructures. Like these networks, this neighbourhood network can also be visualized as a bipartite affiliation network and therefore analysed using correspondence analysis. We will show how a neighbourhood analysis will benefit from an upstream correspondence analysis and how this could be done. We will also present and discuss the results of such an analysis.}, subject = {urban planning}, language = {de} } @article{StaubachMachacekSkowroneketal.2020, author = {Staubach, Patrick and Machacek, Jan and Skowronek, Josefine and Wichtmann, Torsten}, title = {Vibratory pile driving in water-saturated sand: Back-analysis of model tests using a hydro-mechanically coupled CEL method}, series = {Soils and Foundations}, volume = {2021}, journal = {Soils and Foundations}, number = {Volume 61, Issue 1}, publisher = {Elsevier, Science Direct}, address = {Amsterdam}, doi = {10.1016/j.sandf.2020.11.005}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210203-43571}, pages = {144 -- 159}, year = {2020}, abstract = {The development of a hydro-mechanically coupled Coupled-Eulerian-Lagrangian (CEL) method and its application to the back-analysisof vibratory pile driving model tests in water-saturated sand is presented. The predicted pile penetration using this approachis in good agreement with the results of the model tests as well as with fully Lagrangian simulations. In terms of pore water pressure, however, the results of the CEL simulation show a slightly worse accordance with the model tests compared to the Lagrangian simulation. Some shortcomings of the hydro-mechanically coupled CEL method in case of frictional contact problems and pore fluids with high bulk modulus are discussed. Lastly, the CEL method is applied to the simulation of vibratory driving of open-profile piles under partially drained conditions to study installation-induced changes in the soil state. It is concluded that the proposed method is capable of realistically reproducing the most important mechanisms in the soil during the driving process despite its addressed shortcomings.}, subject = {Plastische Deformation}, language = {en} } @article{Koenig, author = {K{\"o}nig, Reinhard}, title = {Urban Design Synthesis for Building Layouts : Urban Design Synthesis for Building Layouts based on Evolutionary Many-Criteria Optimization}, series = {International Journal of Architectural Computing}, journal = {International Journal of Architectural Computing}, doi = {10.1260/1478-0771.13.3-4.257}, pages = {257 -- 270}, abstract = {When working on urban planning projects there are usually multiple aspects to consider. Often these aspects are contradictory and it is not possible to choose one over the other; instead, they each need to be fulfilled as well as possible. In this situation ideal solutions are not always found because they are either not sought or the problems are regarded as being too complex for human capabilities.To improve this situation we propose complementing traditional design approaches with a design synthesis process based on evolutionary many-criteria optimization methods that can fulfill formalizable design requirements. In addition we show how self-organizing maps can be used to visualize many-dimensional solution spaces in an easily analyzable and comprehensible form.The system is presented using an urban planning scenario for the placement of building volumes.}, subject = {Design synthesis}, language = {en} } @article{IşıkBueyueksaracLeventEkincietal., author = {I{\c{s}}{\i}k, Ercan and B{\"u}y{\"u}ksara{\c{c}}, Ayd{\i}n and Levent Ekinci, Yunus and Ayd{\i}n, Mehmet Cihan and Harirchian, Ehsan}, title = {The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey)}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7247}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42758}, pages = {23}, abstract = {The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2\%, 10\%, 50\%, and 68\% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province's design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.}, subject = {Erdbeben}, language = {en} } @article{ArnoldKraus, author = {Arnold, Robert and Kraus, Matthias}, title = {On the nonstationary identification of climate-influenced loads for the semi-probabilistic approach using measured and projected data}, series = {Cogent Engineering}, volume = {2022}, journal = {Cogent Engineering}, number = {Volume 9, issue 1, article 2143061}, editor = {Pham, Duc}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/23311916.2022.2143061}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221117-47363}, pages = {1 -- 26}, abstract = {A safe and economic structural design based on the semi-probabilistic concept requires statistically representative safety elements, such as characteristic values, design values, and partial safety factors. Regarding climate loads, the safety levels of current design codes strongly reflect experiences based on former measurements and investigations assuming stationary conditions, i.e. involving constant frequencies and intensities. However, due to climate change, occurrence of corresponding extreme weather events is expected to alter in the future influencing the reliability and safety of structures and their components. Based on established approaches, a systematically refined data-driven methodology for the determination of design parameters considering nonstationarity as well as standardized targets of structural reliability or safety, respectively, is therefore proposed. The presented procedure picks up fundamentals of European standardization and extends them with respect to nonstationarity by applying a shifting time window method. Taking projected snow loads into account, the application of the method is exemplarily demonstrated and various influencing parameters are discussed.}, subject = {Reliabilit{\"a}t}, language = {en} } @article{VoelkerBeckmannKoehlmannetal., author = {V{\"o}lker, Conrad and Beckmann, Julia and Koehlmann, Sandra and Kornadt, Oliver}, title = {Occupant requirements in residential buildings - an empirical study and a theoretical model}, series = {Advances in Building Energy Research}, journal = {Advances in Building Energy Research}, number = {7 (1)}, doi = {10.25643/bauhaus-universitaet.3813}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181015-38137}, pages = {35 -- 50}, abstract = {Occupant needs with regard to residential buildings are not well known due to a lack of representative scientific studies. To improve the lack of data, a large scale study was carried out using a Post Occupancy Evaluation of 1,416 building occupants. Several criteria describing the needs of occupants were evaluated with regard to their subjective level of relevance. Additionally, we investigated the degree to which deficiencies subjectively exist, and the degree to which occupants were able to accept them. From the data obtained, a hierarchy of criteria was created. It was found that building occupants ranked the physiological needs of air quality and thermal comfort the highest. Health hazards such as mould and contaminated building materials were unacceptable for occupants, while other deficiencies were more likely to be tolerated. Occupant satisfaction was also investigated. We found that most occupants can be classified as satisfied, although some differences do exist between different populations. To explain the relationship between the constructs of what we call relevance, acceptance, deficiency and satisfaction, we then created an explanatory model. Using correlation and regression analysis, the validity of the model was then confirmed by applying the collected data. The results of the study are both relevant in shaping further research and in providing guidance on how to maximize tenant satisfaction in real estate management.}, subject = {Post Occupancy Evaluation}, language = {en} } @article{KoenigSchneider, author = {K{\"o}nig, Reinhard and Schneider, Sven}, title = {Nutzerinteraktion bei der computergest{\"u}tzten Generierung von Layouts}, doi = {10.25643/bauhaus-universitaet.1652}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120509-16524}, abstract = {Das vorliegende Arbeitspapier besch{\"a}ftigt sich mit der Thematik der Nutzerinteraktion bei computerbasierten generativen Systemen. Zun{\"a}chst wird erl{\"a}utert, warum es notwendig ist, den Nutzer eines solchen Systems in den Generierungsprozess zu involvieren. Darauf aufbauend werden Anforderungen an ein interaktives generatives System formuliert. Anhand eines Systems zur Generierung von Layouts werden Methoden diskutiert, um diesen Anforderungen gerecht zu werden. Es wird gezeigt, dass sich insbesondere evolution{\"a}re Algorithmen f{\"u}r ein interaktives entwurfsunterst{\"u}tzendes System eignen. Es wird kurz beschrieben, wie sich Layoutprobleme durch eine evolution{\"a}re Strategie l{\"o}sen lassen. Abschließend werden Fragen bez{\"u}glich der grafischen Darstellung von Layoutl{\"o}sungen und der Interaktion mit dem Dargestellten diskutiert.}, subject = {Interaktion}, language = {de} } @article{Koenig, author = {K{\"o}nig, Reinhard}, title = {Interview on Information Architecture}, series = {Swiss Architecture in the Moving Image}, journal = {Swiss Architecture in the Moving Image}, doi = {10.25643/bauhaus-universitaet.2507}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180422-25078}, pages = {151 -- 154}, abstract = {Interview on Information Architecture}, subject = {Architektur}, language = {en} } @article{TarabenMorgenthal, author = {Taraben, Jakob and Morgenthal, Guido}, title = {Integration and Comparison Methods for Multitemporal Image-Based 2D Annotations in Linked 3D Building Documentation}, series = {Remote Sensing}, volume = {2022}, journal = {Remote Sensing}, number = {Volume 14, issue 9, article 2286}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/rs14092286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220513-46488}, pages = {1 -- 20}, abstract = {Data acquisition systems and methods to capture high-resolution images or reconstruct 3D point clouds of existing structures are an effective way to document their as-is condition. These methods enable a detailed analysis of building surfaces, providing precise 3D representations. However, for the condition assessment and documentation, damages are mainly annotated in 2D representations, such as images, orthophotos, or technical drawings, which do not allow for the application of a 3D workflow or automated comparisons of multitemporal datasets. In the available software for building heritage data management and analysis, a wide range of annotation and evaluation functions are available, but they also lack integrated post-processing methods and systematic workflows. The article presents novel methods developed to facilitate such automated 3D workflows and validates them on a small historic church building in Thuringia, Germany. Post-processing steps using photogrammetric 3D reconstruction data along with imagery were implemented, which show the possibilities of integrating 2D annotations into 3D documentations. Further, the application of voxel-based methods on the dataset enables the evaluation of geometrical changes of multitemporal annotations in different states and the assignment to elements of scans or building models. The proposed workflow also highlights the potential of these methods for condition assessment and planning of restoration work, as well as the possibility to represent the analysis results in standardised building model formats.}, subject = {Bauwesen}, language = {en} } @article{ChowdhuryZabel, author = {Chowdhury, Sharmistha and Zabel, Volkmar}, title = {Influence of loading sequence on wind induced fatigue assessment of bolts in TV-tower connection block}, series = {Results in Engineering}, volume = {2022}, journal = {Results in Engineering}, number = {Volume 16, article 100603}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2022.100603}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47303}, pages = {1 -- 18}, abstract = {Bolted connections are widely employed in structures like transmission poles, wind turbines, and television (TV) towers. The behaviour of bolted connections is often complex and plays a significant role in the overall dynamic characteristics of the structure. The goal of this work is to conduct a fatigue lifecycle assessment of such a bolted connection block of a 193 m tall TV tower, for which 205 days of real measurement data have been obtained from the installed monitoring devices. Based on the recorded data, the best-fit stochastic wind distribution for 50 years, the decisive wind action, and the locations to carry out the fatigue analysis have been decided. A 3D beam model of the entire tower is developed to extract the nodal forces corresponding to the connection block location under various mean wind speeds, which is later coupled with a detailed complex finite element model of the connection block, with over three million degrees of freedom, for acquiring stress histories on some pre-selected bolts. The random stress histories are analysed using the rainflow counting algorithm (RCA) and the damage is estimated using Palmgren-Miner's damage accumulation law. A modification is proposed to integrate the loading sequence effect into the RCA, which otherwise is ignored, and the differences between the two RCAs are investigated in terms of the accumulated damage.}, subject = {Schadensakkumulation}, language = {en} } @article{HarirchianLahmer, author = {Harirchian, Ehsan and Lahmer, Tom}, title = {Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, Issue 3, 2375}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10072375}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41161}, pages = {14}, abstract = {Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bing{\"o}l and D{\"u}zce earthquakes in Turkey.}, subject = {Fuzzy-Logik}, language = {en} } @article{HijaziKoenigSchneideretal., author = {Hijazi, Ihab Hamzi and K{\"o}nig, Reinhard and Schneider, Sven and Li, Xin and Bielik, Martin and Schmitt, Gerhard and Donath, Dirk}, title = {Geostatistical Analysis for the Study of Relationships between the Emotional Responses of Urban Walkers to Urban Spaces}, series = {International Journal of E-Planning Research}, journal = {International Journal of E-Planning Research}, doi = {10.25643/bauhaus-universitaet.2602}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26025}, pages = {1 -- 19}, abstract = {The described study aims to find correlations between urban spatial configurations and human emotions. To this end, the authors measured people's emotions while they walk along a path in an urban area using an instrument that measures skin conductance and skin temperature. The corresponding locations of the test persons were measured recorded by using a GPS-tracker (n=13). The results are interpreted and categorized as measures for positive and negative emotional arousal. To evaluate the technical and methodological process. The test results offer initial evidence that certain spaces or spatial sequences do cause positive or negative emotional arousal while others are relatively neutral. To achieve the goal of the study, the outcome was used as a basis for the study of testing correlations between people's emotional responses and urban spatial configurations represented by Isovist properties of the urban form. By using their model the authors can explain negative emotional arousal for certain places, but they couldn't find a model to predict emotional responses for individual spatial configurations.}, subject = {Geografie}, language = {en} } @article{Knecht, author = {Knecht, Katja}, title = {Generierung von Grundriss-Layouts mithilfe von Evolution{\"a}ren Algorithmen und K-dimensionalen Baumstrukturen}, doi = {10.25643/bauhaus-universitaet.2666}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26664}, abstract = {K-dimensionale B{\"a}ume, im Englischen verk{\"u}rzt auch K-d Trees genannt, sind bin{\"a}re Such- und Partitionierungsb{\"a}ume, die eine Menge von n Punkten in einem multidimensionalen Raum repr{\"a}sentieren. Ihren Einsatz finden K-d Tree Datenstrukturen vor allem bei der Suche nach den n{\"a}chsten Nachbarn, der Nearest Neighbor Query, und in weiteren Suchalgorithmen f{\"u}r beispielsweise Datenbankapplikationen. Im Rahmen des Forschungsprojekts Kremlas wurde die Raumpartitionierung durch K-d Trees als eine Teill{\"o}sung zur Generierung von Layouts bei der Entwicklung einer kreativen evolution{\"a}ren Entwurfsmethode f{\"u}r Layoutprobleme in Architektur und St{\"a}dtebau entwickelt. Der Entwurf und die Entwicklung von Layouts, d.h. die Anordnung von R{\"a}umen, Bauk{\"o}rpern und Geb{\"a}udekomplexen im architektonischen und st{\"a}dtischen Kontext stellt eine zentrale Aufgabe in Architektur und Stadtplanung dar. Sie erfordert von Architekten und Planern funktionale sowie kreative Probleml{\"o}sungen. Das Forschungsprojekt besch{\"a}ftigt sich folglich nicht nur mit der Optimierung von Grundrissen sondern bindet auch gestalterische Aspekte mit ein. In der entwickelten Teill{\"o}sung dient der K-d Tree Algorithmus zun{\"a}chst zur Unterteilung einer vorgegebenen Fl{\"a}che, wobei die Schnittlinien m{\"o}glichen Raumgrenzen entsprechen. Durch die Kombination des K-d Tree Algorithmus mit genetischen Algorithmen und evolution{\"a}ren Strategien werden Layouts hinsichtlich der Kriterien Raumgr{\"o}ße und Nachbarschaften optimiert. Durch die Interaktion des Nutzers k{\"o}nnen die L{\"o}sungen dynamisch angepasst und zur Laufzeit nach gestalterischen Kriterien ver{\"a}ndert werden. Das Ergebnis ist ein generativer Mechanismus, der bei der kreativen algorithmischen L{\"o}sung von Layoutaufgaben in Architektur und St{\"a}dtebau eine vielversprechende Variante zu bereits bekannten Algorithmen darstellt.}, subject = {Grundrissgenerierung}, language = {de} } @article{KoenigBauriedel, author = {K{\"o}nig, Reinhard and Bauriedel, Christian}, title = {Generating settlement structures: a method for urban planning and analysis supported by cellular automata}, series = {Environment and Planning B: Planning and Design}, journal = {Environment and Planning B: Planning and Design}, doi = {10.25643/bauhaus-universitaet.2605}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160624-26054}, pages = {602 -- 624}, abstract = {Previous models for the explanation of settlement processes pay little attention to the interactions between settlement spreading and road networks. On the basis of a dielectric breakdown model in combination with cellular automata, we present a method to steer precisely the generation of settlement structures with regard to their global and local density as well as the size and number of forming clusters. The resulting structures depend on the logic of how the dependence of the settlements and the road network is implemented to the simulation model. After analysing the state of the art we begin with a discussion of the mutual dependence of roads and land development. Next, we elaborate a model that permits the precise control of permeability in the developing structure as well as the settlement density, using the fewest necessary control parameters. On the basis of different characteristic values, possible settlement structures are analysed and compared with each other. Finally, we reflect on the theoretical contribution of the model with regard to the context of urban dynamics.}, language = {en} } @article{KnechtKoenig, author = {Knecht, Katja and K{\"o}nig, Reinhard}, title = {Evolution{\"a}re Generierung von Grundriss-Layouts mithilfe von Unterteilungsalgorithmen}, doi = {10.25643/bauhaus-universitaet.1653}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120509-16534}, abstract = {Das Unterteilen einer vorgegebenen Grundfl{\"a}che in Zonen und R{\"a}ume ist eine im Architekturentwurf h{\"a}ufig eingesetzte Methode zur Grundrissentwicklung. F{\"u}r deren Automatisierung k{\"o}nnen Unterteilungsalgorithmen betrachtet werden, die einen vorgegebenen, mehrdimensionalen Raum nach einer festgelegten Regel unterteilen. Neben dem Einsatz in der Computergrafik zur Polygondarstellung und im Floorplanning zur Optimierung von Platinen-, Chip- und Anlagenlayouts finden Unterteilungsalgorithmen zunehmend Anwendung bei der automatischen Generierung von Stadt- und Geb{\"a}udegrundrissen, insbesondere in Computerspielen. Im Rahmen des Forschungsprojekts Kremlas wurde das gestalterische und generative Potential von Unterteilungsalgorithmen im Hinblick auf architektonische Fragestellungen und ihre Einsatzm{\"o}glichkeiten zur Entwicklung einer kreativen evolution{\"a}ren Entwurfsmethode zur L{\"o}sung von Layoutproblemen in Architektur und St{\"a}dtebau untersucht. Es entstand ein generativer Mechanismus, der eine Unterteilungsfolge zuf{\"a}llig erstellt und Grundrisse mit einer festgelegten Anzahl an R{\"a}umen mit bestimmter Raumgr{\"o}ße durch Unterteilung generiert. In Kombination mit evolution{\"a}ren Algorithmen lassen sich die erhaltenen Layoutl{\"o}sungen zudem hinsichtlich architektonisch relevanter Kriterien optimieren, f{\"u}r die im vorliegenden Fall Nachbarschaftsbeziehungen zwischen einzelnen R{\"a}umen betrachtet wurden.}, subject = {Unterteilungsalgorithmus}, language = {de} } @article{KumariHarirchianLahmeretal., author = {Kumari, Vandana and Harirchian, Ehsan and Lahmer, Tom and Rasulzade, Shahla}, title = {Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings}, series = {Buildings}, volume = {2022}, journal = {Buildings}, number = {Volume 12, issue 5, article 578}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/buildings12050578}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220509-46387}, pages = {1 -- 23}, abstract = {The seismic vulnerability assessment of existing reinforced concrete (RC) buildings is a significant source of disaster mitigation plans and rescue services. Different countries evolved various Rapid Visual Screening (RVS) techniques and methodologies to deal with the devastating consequences of earthquakes on the structural characteristics of buildings and human casualties. Artificial intelligence (AI) methods, such as machine learning (ML) algorithm-based methods, are increasingly used in various scientific and technical applications. The investigation toward using these techniques in civil engineering applications has shown encouraging results and reduced human intervention, including uncertainties and biased judgment. In this study, several known non-parametric algorithms are investigated toward RVS using a dataset employing different earthquakes. Moreover, the methodology encourages the possibility of examining the buildings' vulnerability based on the factors related to the buildings' importance and exposure. In addition, a web-based application built on Django is introduced. The interface is designed with the idea to ease the seismic vulnerability investigation in real-time. The concept was validated using two case studies, and the achieved results showed the proposed approach's potential efficiency}, subject = {Maschinelles Lernen}, language = {en} } @article{Koehler, author = {K{\"o}hler, Hermann}, title = {Ergebnisse der Befragung zu Wohnstandortpr{\"a}ferenzen von Lebensweltsegmenten in Dresden}, doi = {10.25643/bauhaus-universitaet.2670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26704}, abstract = {In vorliegender Studie werden die Wohnstandortpr{\"a}ferenzen der Sinus-Milieugruppen in Dresden {\"u}ber eine standardisierte Befragung (n=318) untersucht. Es wird unterschieden zwischen handlungsleitenden Wohnstandortpr{\"a}ferenzen, die durch Anhaltspunkte auf der Handlungsebene st{\"a}rker in Betracht gezogen werden sollten, und Wohnstandortpr{\"a}ferenzen, welche eher orientierenden Charakter haben. Die Wohnstandortpr{\"a}ferenzen werden untersucht anhand der Kategorien Ausstattung/Zustand der Wohnung/des n{\"a}heren Wohnumfeldes, Versorgungsstruktur, soziales Umfeld, Baustrukturtyp, Ortsgebundenheit sowie des Aspektes des Images eines Stadtviertels. Um die Befragten den Sinus-Milieugruppen zuordnen zu k{\"o}nnen, wird ein Lebensweltsegment-Modell entwickelt, welches den Anspruch hat, die Sinus-Milieugruppen in der Tendenz abzubilden. Die Studie kommt zu dem Ergebnis, dass die Angeh{\"o}rigen der verschiedenen Lebensweltsegmente in jeder Kategorie - wenn auch z.T. auf geringerem Niveau - signifikante Unterschiede in der Bewertung einzelner Wohnstandortpr{\"a}ferenzen aufweisen.}, subject = {Milieuforschung}, language = {de} } @article{Koenig, author = {K{\"o}nig, Reinhard}, title = {Die Stadt der Agenten und Automaten}, series = {FORUM - Architektur \& Bauforum}, journal = {FORUM - Architektur \& Bauforum}, doi = {10.25643/bauhaus-universitaet.2608}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26083}, abstract = {PLANUNGSUNTERST{\"U}TZUNG DURCH DIE ANALYSE R{\"A}UMLICHER PROZESSE MITTELS COMPUTERSIMULATIONEN. Erst wenn man - zumindest im Prinzip - versteht, wie eine Stadt mit ihren komplexen, verwobenen Vorg{\"a}ngen im Wesentlichen funktioniert, ist eine sinnvolle Stadtplanung m{\"o}glich. Denn jede Planung bedeutet einen Eingriff in den komplexen Organismus einer Stadt. Findet dieser Eingriff ohne Wissen {\"u}ber die Funktionsweise des Organismus statt, k{\"o}nnen auch die Auswirkungen nicht abgesch{\"a}tzt werden. Dieser Beitrag stellt dar, wie urbane Prozesse mittels Computersimulationen unter Zuhilfenahme so genannter Multi-Agenten-Systeme und Zellul{\"a}rer Automaten verstanden werden k{\"o}nnen. von}, subject = {CAD}, language = {de} } @article{SirtlHadlichKrausetal., author = {Sirtl, Christin and Hadlich, Christiane and Kraus, Matthias and Osburg, Andrea}, title = {Determination of Bonding Failures in Transparent Materials with Non-Destructive Methods - Evaluation of Climatically Stressed Glued and Laminated Glass Compounds}, series = {World Journal of Engineering and Technology}, volume = {2018}, journal = {World Journal of Engineering and Technology}, number = {Vol. 6, No 2}, doi = {10.4236/wjet.2018.62020}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180606-37526}, pages = {315 -- 331}, abstract = {As part of an international research project - funded by the European Union - capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.}, subject = {Klebtechnik}, language = {en} } @article{ChowdhuryKraus, author = {Chowdhury, Sharmistha and Kraus, Matthias}, title = {Design-related reassessment of structures integrating Bayesian updating of model safety factors}, series = {Results in Engineering}, volume = {2022}, journal = {Results in Engineering}, number = {Volume 16, article 100560}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2022.100560}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47294}, pages = {1 -- 1}, abstract = {In the semi-probabilistic approach of structural design, the partial safety factors are defined by considering some degree of uncertainties to actions and resistance, associated with the parameters' stochastic nature. However, uncertainties for individual structures can be better examined by incorporating measurement data provided by sensors from an installed health monitoring scheme. In this context, the current study proposes an approach to revise the partial safety factor for existing structures on the action side, γE by integrating Bayesian model updating. A simple numerical example of a beam-like structure with artificially generated measurement data is used such that the influence of different sensor setups and data uncertainties on revising the safety factors can be investigated. It is revealed that the health monitoring system can reassess the current capacity reserve of the structure by updating the design safety factors, resulting in a better life cycle assessment of structures. The outcome is furthermore verified by analysing a real life small railway steel bridge ensuring the applicability of the proposed method to practical applications.}, subject = {Lebenszyklus}, language = {en} } @article{Koenig, author = {K{\"o}nig, Reinhard}, title = {Computers in the design phase - Ten thesis on their uselessness}, series = {Der Generalist}, journal = {Der Generalist}, doi = {10.25643/bauhaus-universitaet.2607}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26075}, abstract = {At the end of the 1960s, architects at various universities world- wide began to explore the potential of computer technology for their profession. With the decline in prices for PCs in the 1990s and the development of various computer-aided architectural design systems (CAAD), the use of such systems in architectural and planning offices grew continuously. Because today no ar- chitectural office manages without a costly CAAD system and because intensive soſtware training has become an integral part of a university education, the question arises about what influence the various computer systems have had on the design process forming the core of architectural practice. The text at hand devel- ops ten theses about why there has been no success to this day in introducing computers such that new qualitative possibilities for design result. RESTRICTEDNESS}, subject = {CAD}, language = {en} } @article{KleinKoenig, author = {Klein, Bernhard and K{\"o}nig, Reinhard}, title = {Computational Urban Planning: Using the Value Lab as Control Center}, series = {FCL Magazine, Special Issue Simulation Platform}, journal = {FCL Magazine, Special Issue Simulation Platform}, doi = {10.25643/bauhaus-universitaet.2601}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26011}, pages = {38 -- 45}, abstract = {Urban planning involves many aspects and various disciplines, demanding an asynchronous planning approach. The level of complexity rises with each aspect to be considered and makes it difficult to find universally satisfactory solutions. To improve this situation we propose a new approach, which complement traditional design methods with a computational urban plan- ning method that can fulfil formalizable design requirements automatically. Based on this approach we present a design space exploration framework for complex urban planning projects. For a better understanding of the idea of design space exploration, we introduce the concept of a digital scout which guides planners through the design space and assists them in their creative explorations. The scout can support planners during manual design by informing them about potential im- pacts or by suggesting different solutions that fulfill predefined quality requirements. The planner can change flexibly between a manually controlled and a completely automated design process. The developed system is presented using an exemplary urban planning scenario on two levels from the street layout to the placement of building volumes. Based on Self-Organizing Maps we implemented a method which makes it possible to visualize the multi-dimensional solution space in an easily analysable and comprehensible form.}, subject = {Stadtgestaltung}, language = {en} } @article{Hanna, author = {Hanna, John}, title = {Computational Modelling for the Effects of Capsular Clustering on Fracture of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique}, series = {Applied Sciences}, volume = {2022}, journal = {Applied Sciences}, number = {Volume 12, issue 10, article 5112}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app12105112}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220721-46717}, pages = {1 -- 17}, abstract = {The fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concrete cannot be made without an appropriate modelling strategy. In this paper, the effects of microcapsule size and clustering on the fractured microcapsules are studied computationally. A simple 2D computational modelling approach is developed based on the eXtended Finite Element Method (XFEM) and cohesive surface technique. The proposed model shows that the microcapsule size and clustering have significant roles in governing the load-carrying capacity and the crack propagation pattern and determines whether the microcapsule will be fractured or debonded from the concrete matrix. The higher the microcapsule circumferential contact length, the higher the load-carrying capacity. When it is lower than 25\% of the microcapsule circumference, it will result in a greater possibility for the debonding of the microcapsule from the concrete. The greater the core/shell ratio (smaller shell thickness), the greater the likelihood of microcapsules being fractured.}, subject = {Beton}, language = {en} } @article{KnechtKoenig, author = {Knecht, Katja and K{\"o}nig, Reinhard}, title = {Automatische Grundst{\"u}cksumlegung mithilfe von Unterteilungsalgorithmen und typenbasierte Generierung von Stadtstrukturen}, doi = {10.25643/bauhaus-universitaet.2673}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26730}, abstract = {Dieses Arbeitspapier beschreibt, wie ausgehend von einem vorhandenen Straßennetzwerk Bebauungsareale mithilfe von Unterteilungsalgorithmen automatisch umgelegt, d.h. in Grundst{\"u}cke unterteilt, und anschließend auf Basis verschiedener st{\"a}dtebaulicher Typen bebaut werden k{\"o}nnen. Die Unterteilung von Bebauungsarealen und die Generierung von Bebauungsstrukturen unterliegen dabei bestimmten stadtplanerischen Einschr{\"a}nkungen, Vorgaben und Parametern. Ziel ist es aus den dargestellten Untersuchungen heraus ein Vorschlagssystem f{\"u}r stadtplanerische Entw{\"u}rfe zu entwickeln, das anhand der Umsetzung eines ersten Softwareprototyps zur Generierung von Stadtstrukturen weiter diskutiert wird.}, subject = {Automatisierung}, language = {de} } @article{Knecht, author = {Knecht, Katja}, title = {Augmented Urban Model: Ein Tangible User Interface zur Unterst{\"u}tzung von Stadtplanungsprozessen}, doi = {10.25643/bauhaus-universitaet.2674}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160823-26740}, abstract = {Im architektonischen und st{\"a}dtebaulichen Kontext erf{\"u}llen physische und digitale Modelle aufgrund ihrer weitgehend komplement{\"a}ren Eigenschaften und Qualit{\"a}ten unterschiedliche, nicht verkn{\"u}pfte Aufgaben und Funktionen im Entwurfs- und Planungsprozess. W{\"a}hrend physische Modelle vor allem als Darstellungs- und Kommunikationsmittel aber auch als Arbeitswerkzeug genutzt werden, unterst{\"u}tzen digitale Modelle dar{\"u}ber hinaus die Evaluation eines Entwurfs durch computergest{\"u}tzte Analyse- und Simulationstechniken. Analysiert wurden im Rahmen der in diesem Arbeitspapier vorgestellten Arbeit neben dem Einsatz des Modells als analogem und digitalem Werkzeug im Entwurf die Bedeutung des Modells f{\"u}r den Arbeitsprozess sowie Vorbilder aus dem Bereich der Tangible User Interfaces mit Bezug zu Architek¬tur und St{\"a}dtebau. Aus diesen Betrachtungen heraus wurde ein Prototyp entwickelt, das Augmented Urban Model, das unter anderem auf den fr{\"u}hen Projekten und Forschungsans{\"a}tzen aus dem Gebiet der Tangible User Interfaces aufsetzt, wie dem metaDESK von Ullmer und Ishii und dem Urban Planning Tool Urp von Underkoffler und Ishii. Das Augmented Urban Model zielt darauf ab, die im aktuellen Entwurfs- und Planungsprozess fehlende Br{\"u}cke zwischen realen und digitalen Modellwelten zu schlagen und gleichzeitig eine neue tangible Benutzerschnittstelle zu schaffen, welche die Manipulation von und die Interaktion mit digitalen Daten im realen Raum erm{\"o}glicht.}, subject = {tangible user interface}, language = {de} } @article{LashkarAraKalantariSheikhKhozanietal., author = {Lashkar-Ara, Babak and Kalantari, Niloofar and Sheikh Khozani, Zohreh and Mosavi, Amir}, title = {Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel}, series = {Mathematics}, volume = {2021}, journal = {Mathematics}, number = {Volume 9, Issue 6, Article 596}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math9060596}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210504-44197}, pages = {15}, abstract = {One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.}, subject = {Maschinelles Lernen}, language = {en} } @article{KoehlerKoenig, author = {K{\"o}hler, Hermann and K{\"o}nig, Reinhard}, title = {Aktionsr{\"a}ume in Dresden}, doi = {10.25643/bauhaus-universitaet.2672}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26726}, abstract = {In vorliegender Studie werden die Aktionsr{\"a}ume von Befragten in Dresden {\"u}ber eine standardisierte Befragung (n=360) untersucht. Die den Aktionsr{\"a}umen zugrundeliegenden Aktivit{\"a}ten werden unterschieden in Einkaufen f{\"u}r den t{\"a}glichen Bedarf, Ausgehen (z.B. in Caf{\´e}, Kneipe, Gastst{\"a}tte), Erholung im Freien (z.B. spazieren gehen, Nutzung von Gr{\"u}nanlagen) und private Geselligkeit (z.B. Feiern, Besuch von Verwandten/Freunden). Der Aktionsradius wird unterschieden in Wohnviertel, Nachbarviertel und sonstiges weiteres Stadtgebiet. Um aus den vier betrachteten Aktivit{\"a}ten einen umfassenden Kennwert f{\"u}r den durchschnittlichen Aktionsradius eines Befragten zu bilden, wird ein Modell f{\"u}r den Kennwert eines Aktionsradius entwickelt. Die Studie kommt zu dem Ergebnis, dass das Alter der Befragten einen signifikanten - wenn auch geringen - Einfluss auf den Aktionsradius hat. Das Haushaltsnettoeinkommen hat einen mit Einschr{\"a}nkung signifikanten, ebenfalls geringen Einfluss auf allt{\"a}gliche Aktivit{\"a}ten der Befragten.}, subject = {Aktionsraumforschung}, language = {de} } @article{HarirchianKumariJadhavetal., author = {Harirchian, Ehsan and Kumari, Vandana and Jadhav, Kirti and Rasulzade, Shahla and Lahmer, Tom and Raj Das, Rohan}, title = {A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings}, series = {Applied Sciences}, volume = {2021}, journal = {Applied Sciences}, number = {Volume 11, issue 16, article 7540}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app11167540}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210818-44853}, pages = {1 -- 33}, abstract = {A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings' present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings.}, subject = {Maschinelles Lernen}, language = {en} } @article{HarirchianKumariJadhavetal., author = {Harirchian, Ehsan and Kumari, Vandana and Jadhav, Kirti and Raj Das, Rohan and Rasulzade, Shahla and Lahmer, Tom}, title = {A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7153}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207153}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42744}, pages = {18}, abstract = {Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure's performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building's behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings.}, subject = {Erdbeben}, language = {en} } @article{AlaladeReichertKoehnetal., author = {Alalade, Muyiwa and Reichert, Ina and K{\"o}hn, Daniel and Wuttke, Frank and Lahmer, Tom}, title = {A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, issue 12, article 161}, editor = {Qu, Chunxu and Gao, Chunxu and Zhang, Rui and Jia, Ziguang and Li, Jiaxiang}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7120161}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221201-48396}, pages = {19}, abstract = {For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution "interpretable" images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams.}, subject = {Damm}, language = {en} } @article{HarirchianJadhavMohammadetal., author = {Harirchian, Ehsan and Jadhav, Kirti and Mohammad, Kifaytullah and Aghakouchaki Hosseini, Seyed Ehsan and Lahmer, Tom}, title = {A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 18, article 6411}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10186411}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200918-42360}, pages = {24}, abstract = {Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared.}, subject = {Erdbebensicherheit}, language = {en} }