@phdthesis{Harirchian, author = {Harirchian, Ehsan}, title = {Improved Rapid Assessment of Earthquake Hazard Safety of Existing Buildings Using a Hierarchical Type-2 Fuzzy Logic Model}, doi = {10.25643/bauhaus-universitaet.4396}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210326-43963}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {143}, abstract = {Although it is impractical to avert subsequent natural disasters, advances in simulation science and seismological studies make it possible to lessen the catastrophic damage. There currently exists in many urban areas a large number of structures, which are prone to damage by earthquakes. These were constructed without the guidance of a national seismic code, either before it existed or before it was enforced. For instance, in Istanbul, Turkey, as a high seismic area, around 90\% of buildings are substandard, which can be generalized into other earthquakeprone regions in Turkey. The reliability of this building stock resulting from earthquake-induced collapse is currently uncertain. Nonetheless, it is also not feasible to perform a detailed seismic vulnerability analysis on each building as a solution to the scenario, as it will be too complicated and expensive. This indicates the necessity of a reliable, rapid, and computationally easy method for seismic vulnerability assessment, commonly known as Rapid Visual Screening (RVS). In RVS methodology, an observational survey of buildings is performed, and according to the data collected during the visual inspection, a structural score is calculated without performing any structural calculations to determine the expected damage of a building and whether the building needs detailed assessment. Although this method might save time and resources due to the subjective/qualitative judgments of experts who performed the inspection, the evaluation process is dominated by vagueness and uncertainties, where the vagueness can be handled adequately through the fuzzy set theory but do not cover all sort of uncertainties due to its crisp membership functions. In this study, a novel method of rapid visual hazard safety assessment of buildings against earthquake is introduced in which an interval type-2 fuzzy logic system (IT2FLS) is used to cover uncertainties. In addition, the proposed method provides the possibility to evaluate the earthquake risk of the building by considering factors related to the building importance and exposure. A smartphone app prototype of the method has been introduced. For validation of the proposed method, two case studies have been selected, and the result of the analysis presents the robust efficiency of the proposed method.}, subject = {Fuzzy-Logik}, language = {en} } @phdthesis{Hollberg, author = {Hollberg, Alexander}, title = {A parametric method for building design optimization based on Life Cycle Assessment - Appendix}, series = {A parametric method for building design optimization based on Life Cycle Assessment}, journal = {A parametric method for building design optimization based on Life Cycle Assessment}, doi = {10.25643/bauhaus-universitaet.2688}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20161101-26884}, abstract = {The building sector is responsible for a large share of human environmental impacts, over which architects and planners have a major influence. The main objective of this thesis is to develop a method for environmental building design optimization based on Life Cycle Assessment (LCA) that is applicable as part of the design process. The research approach includes a thorough analysis of LCA for buildings in relation to the architectural design stages and the establishment of a requirement catalogue. The key concept of the novel method called Parametric Life Cycle Assessment(PLCA) is to combine LCA with parametric design. The application of this method to three examples shows that building designs can be optimized time-efficiently and holistically from the beginning of the most influential early design stages, an achievement which has not been possible until now.}, subject = {{\"O}kobilanz}, language = {en} } @article{AlaladeReichertKoehnetal., author = {Alalade, Muyiwa and Reichert, Ina and K{\"o}hn, Daniel and Wuttke, Frank and Lahmer, Tom}, title = {A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, issue 12, article 161}, editor = {Qu, Chunxu and Gao, Chunxu and Zhang, Rui and Jia, Ziguang and Li, Jiaxiang}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7120161}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221201-48396}, pages = {19}, abstract = {For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution "interpretable" images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams.}, subject = {Damm}, language = {en} } @phdthesis{Blickling2006, author = {Blickling, Arno}, title = {Spezifikation des Bau-Solls durch interaktive Modellierung auf virtuellen Baustellen}, doi = {10.25643/bauhaus-universitaet.790}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20061105-8311}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2006}, abstract = {Heutige Methoden zur Soll-Spezifikation von Bauleistungen (Kostenermittlung und zeitliche Ablaufplanung) gehen von einer abstrahierten und vereinfachten Betrachtung der Zusammenh{\"a}nge bei Bauprojekten aus. Leistungsverzeichnisse, Kostenermittlungen und Bauzeitpl{\"a}ne orientieren sich nur indirekt an der Geometrie des Bauwerks und der Baustelle. Die dabei verwendeten Medien wie Papier, 2D-Dateien, digitale Leistungsbeschreibungen oder 3D-Darstellungen lassen die Suche nach Informationen auf der Baustelle zu einem zeitaufw{\"a}ndigen und in Anbetracht existierender Medientechnologien ineffizienten Prozess werden. Interaktive virtuelle Umgebungen erlauben die Aufl{\"o}sung starrer Zusammenh{\"a}nge durch interaktive Eingriffe des Anwenders und visualisieren komplexe bauproduktionstechnische Vorg{\"a}nge. Das Konzept der visuellen interaktiven Simulation der Bauproduktion sieht vor, die Soll-Spezifikation anhand eines interaktiven 3D-Modells zu entwickeln, um r{\"a}umliche Ver{\"a}nderungen und parallele Prozesse auf der virtuellen Baustelle im Rahmen der Entscheidungsfindung zum Bauablauf besser ber{\"u}cksichtigen zu k{\"o}nnen. Verlangt man einen hohen Grad an Interaktivit{\"a}t mit dem 3D-Modell, dann bieten sich Computerspieltechnologien sehr gut zu Verifikationszwecken an. Die visuelle interaktive Simulation der Bauproduktion ist damit als eine 3D-modellbasierte Methode der Prozessmodellierung zu verstehen, die Entscheidungen als Input ben{\"o}tigt und die Kostenermittlung sowie die zeitliche Ablaufplanung als Output liefert.}, subject = {Virtuelle Realit{\"a}t}, language = {de} } @article{ChowdhuryZabel, author = {Chowdhury, Sharmistha and Zabel, Volkmar}, title = {Influence of loading sequence on wind induced fatigue assessment of bolts in TV-tower connection block}, series = {Results in Engineering}, volume = {2022}, journal = {Results in Engineering}, number = {Volume 16, article 100603}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2022.100603}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47303}, pages = {1 -- 18}, abstract = {Bolted connections are widely employed in structures like transmission poles, wind turbines, and television (TV) towers. The behaviour of bolted connections is often complex and plays a significant role in the overall dynamic characteristics of the structure. The goal of this work is to conduct a fatigue lifecycle assessment of such a bolted connection block of a 193 m tall TV tower, for which 205 days of real measurement data have been obtained from the installed monitoring devices. Based on the recorded data, the best-fit stochastic wind distribution for 50 years, the decisive wind action, and the locations to carry out the fatigue analysis have been decided. A 3D beam model of the entire tower is developed to extract the nodal forces corresponding to the connection block location under various mean wind speeds, which is later coupled with a detailed complex finite element model of the connection block, with over three million degrees of freedom, for acquiring stress histories on some pre-selected bolts. The random stress histories are analysed using the rainflow counting algorithm (RCA) and the damage is estimated using Palmgren-Miner's damage accumulation law. A modification is proposed to integrate the loading sequence effect into the RCA, which otherwise is ignored, and the differences between the two RCAs are investigated in terms of the accumulated damage.}, subject = {Schadensakkumulation}, language = {en} } @article{ArnoldKraus, author = {Arnold, Robert and Kraus, Matthias}, title = {On the nonstationary identification of climate-influenced loads for the semi-probabilistic approach using measured and projected data}, series = {Cogent Engineering}, volume = {2022}, journal = {Cogent Engineering}, number = {Volume 9, issue 1, article 2143061}, editor = {Pham, Duc}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/23311916.2022.2143061}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221117-47363}, pages = {1 -- 26}, abstract = {A safe and economic structural design based on the semi-probabilistic concept requires statistically representative safety elements, such as characteristic values, design values, and partial safety factors. Regarding climate loads, the safety levels of current design codes strongly reflect experiences based on former measurements and investigations assuming stationary conditions, i.e. involving constant frequencies and intensities. However, due to climate change, occurrence of corresponding extreme weather events is expected to alter in the future influencing the reliability and safety of structures and their components. Based on established approaches, a systematically refined data-driven methodology for the determination of design parameters considering nonstationarity as well as standardized targets of structural reliability or safety, respectively, is therefore proposed. The presented procedure picks up fundamentals of European standardization and extends them with respect to nonstationarity by applying a shifting time window method. Taking projected snow loads into account, the application of the method is exemplarily demonstrated and various influencing parameters are discussed.}, subject = {Reliabilit{\"a}t}, language = {en} } @article{ChowdhuryKraus, author = {Chowdhury, Sharmistha and Kraus, Matthias}, title = {Design-related reassessment of structures integrating Bayesian updating of model safety factors}, series = {Results in Engineering}, volume = {2022}, journal = {Results in Engineering}, number = {Volume 16, article 100560}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2022.100560}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20221028-47294}, pages = {1 -- 1}, abstract = {In the semi-probabilistic approach of structural design, the partial safety factors are defined by considering some degree of uncertainties to actions and resistance, associated with the parameters' stochastic nature. However, uncertainties for individual structures can be better examined by incorporating measurement data provided by sensors from an installed health monitoring scheme. In this context, the current study proposes an approach to revise the partial safety factor for existing structures on the action side, γE by integrating Bayesian model updating. A simple numerical example of a beam-like structure with artificially generated measurement data is used such that the influence of different sensor setups and data uncertainties on revising the safety factors can be investigated. It is revealed that the health monitoring system can reassess the current capacity reserve of the structure by updating the design safety factors, resulting in a better life cycle assessment of structures. The outcome is furthermore verified by analysing a real life small railway steel bridge ensuring the applicability of the proposed method to practical applications.}, subject = {Lebenszyklus}, language = {en} } @article{KumariHarirchianLahmeretal., author = {Kumari, Vandana and Harirchian, Ehsan and Lahmer, Tom and Rasulzade, Shahla}, title = {Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings}, series = {Buildings}, volume = {2022}, journal = {Buildings}, number = {Volume 12, issue 5, article 578}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/buildings12050578}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220509-46387}, pages = {1 -- 23}, abstract = {The seismic vulnerability assessment of existing reinforced concrete (RC) buildings is a significant source of disaster mitigation plans and rescue services. Different countries evolved various Rapid Visual Screening (RVS) techniques and methodologies to deal with the devastating consequences of earthquakes on the structural characteristics of buildings and human casualties. Artificial intelligence (AI) methods, such as machine learning (ML) algorithm-based methods, are increasingly used in various scientific and technical applications. The investigation toward using these techniques in civil engineering applications has shown encouraging results and reduced human intervention, including uncertainties and biased judgment. In this study, several known non-parametric algorithms are investigated toward RVS using a dataset employing different earthquakes. Moreover, the methodology encourages the possibility of examining the buildings' vulnerability based on the factors related to the buildings' importance and exposure. In addition, a web-based application built on Django is introduced. The interface is designed with the idea to ease the seismic vulnerability investigation in real-time. The concept was validated using two case studies, and the achieved results showed the proposed approach's potential efficiency}, subject = {Maschinelles Lernen}, language = {en} } @masterthesis{Nguyen, type = {Bachelor Thesis}, author = {Nguyen, Thai Cuong}, title = {Fl{\"a}chen zweiter Ordnung - D{\"a}cher m{\"u}ssen nicht eben sein}, doi = {10.25643/bauhaus-universitaet.3749}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181024-37496}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {47}, abstract = {In dieser Arbeit geht es um die Quadriken in der Ebene und im Raum. Dabei werden die Transformation in die Normalform und die Klassifikation untersucht. Aus den geometrischen Eigenschaften werden einige Anwendungsbeispiele der Quadriken in der Technik und dem allt{\"a}glichen Leben vorgestellt.}, subject = {Quadrik}, language = {de} } @techreport{VogelVoelkerArnoldetal., author = {Vogel, Albert and V{\"o}lker, Conrad and Arnold, J{\"o}rg and Schmidt, Jens and Thurow, Torsten and Braunes, J{\"o}rg and Tonn, Christian and Bode, Kay-Andr{\´e} and Baldy, Franziska and Erfurt, Wolfgang and Tatarin, Ren{\´e}}, title = {Methoden und Baustoffe zur nutzerorientierten Bausanierung. Schlussbericht zum InnoProfile Forschungsvorhaben}, organization = {Bauhaus-Universit{\"a}t Weimar}, isbn = {978-3-86068-501-3 (Printausg.)}, doi = {10.25643/bauhaus-universitaet.2022}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130830-20229}, pages = {106}, abstract = {Nutzerorientierte Bausanierung bedeutet eine gegen{\"u}ber dem konventionellen Vorgehen deutlich verst{\"a}rkte Ausrichtung des Planungs- und Sanierungsprozesses auf die Anforderungen und Bed{\"u}rfnisse des zuk{\"u}nftigen Nutzers eines Geb{\"a}udes. Dies hat einerseits ein hochwertigeres Produkt zum Ergebnis, erfordert andererseits aber auch den Einsatz neuer Methoden und Baustoffe sowie ein vernetztes Zusammenarbeiten aller am Bauprozess Beteiligten. Der Fokus der Publikation liegt dabei auf den Bereichen, die eine hohe Relevanz f{\"u}r die nutzerorientierte Bausanierung aufweisen. Dabei handelt es sich insbesondere um: Computergest{\"u}tztes Bauaufmaß und digitale Bauwerksmodellierung (BIM), bauphysikalische Methoden zur Optimierung von Energieeffizienz und Behaglichkeit bei der Sanierung von Bestandsgeb{\"a}uden, zerst{\"o}rungsfreie Untersuchungsmethoden im Rahmen einer substanzschonenden Bauzustandsanalyse und Entwicklung von Erg{\"a}nzungsbaustoffen. Das Projekt nuBau ist eine Kooperation zwischen den Fakult{\"a}ten Bauingenieurwesen und Architektur der Bauhaus-Universit{\"a}t Weimar. Die beteiligten Professuren sind: Bauphysik, Informatik in der Architektur, Polymere Werkstoffe und Werkstoffe des Bauens.}, subject = {Nutzerorientierte Bausanierung}, language = {de} }