@phdthesis{Willenbacher2000, author = {Willenbacher, Susanne}, title = {Untersuchungen zu r{\"a}umlichen Benutzerschnittstellen am Beispiel der Pr{\"a}sentation von Stadtinformationen}, doi = {10.25643/bauhaus-universitaet.34}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040218-363}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2000}, abstract = {Schwerpunkt der Arbeit ist die Auseinandersetzung mit den M{\"o}glichkeiten und Grenzen der Desktop-VR als neue Generation der Benutzerschnittstellen. Besondere Bedeutung bei dieser Art des Interface-Designs kommt den Metaphern zu. Ein großer Teil der Arbeit besch{\"a}ftigt sich mit der Klassifikation, der Auswahl und dem Einsatz passender Metaphern unter Ber{\"u}cksichtigung der in der Applikation darzustellenden Informationsinhalte. Aus der Kombination dieser beiden Merkmale (Art der Metapher, Informationsinhalt) ergeben sich vier verschiedene virtuelle Umgebungen, deren Eigenschaften und Besonderheiten konkretisiert und an Beispielen aus dem Anwendungsgebiet der Stadtinformationssysteme vorgestellt werden. Als praktischer Untersuchungsgegenstand dient das Anwendungsgebiet der Stadtinformationssysteme. Die theoretisch basierten Erkenntnisse und Schlußfolgerungen werden durch statistische Untersuchungen, in Form von Frageb{\"o}gen zu Stadtinformationssystemen, {\"u}berpr{\"u}ft und konkretisiert.}, subject = {Virtuelle Realit{\"a}t}, language = {de} } @incollection{Bimber2005, author = {Bimber, Oliver}, title = {HOLOGRAPHICS: Combining Holograms with Interactive Computer Graphics}, series = {New Directions in Holography and Speckles}, booktitle = {New Directions in Holography and Speckles}, doi = {10.25643/bauhaus-universitaet.736}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7365}, year = {2005}, abstract = {Among all imaging techniques that have been invented throughout the last decades, computer graphics is one of the most successful tools today. Many areas in science, entertainment, education, and engineering would be unimaginable without the aid of 2D or 3D computer graphics. The reason for this success story might be its interactivity, which is an important property that is still not provided efficiently by competing technologies - such as holography. While optical holography and digital holography are limited to presenting a non-interactive content, electroholography or computer generated holograms (CGH) facilitate the computer-based generation and display of holograms at interactive rates [2,3,29,30]. Holographic fringes can be computed by either rendering multiple perspective images, then combining them into a stereogram [4], or simulating the optical interference and calculating the interference pattern [5]. Once computed, such a system dynamically visualizes the fringes with a holographic display. Since creating an electrohologram requires processing, transmitting, and storing a massive amount of data, today's computer technology still sets the limits for electroholography. To overcome some of these performance issues, advanced reduction and compression methods have been developed that create truly interactive electroholograms. Unfortunately, most of these holograms are relatively small, low resolution, and cover only a small color spectrum. However, recent advances in consumer graphics hardware may reveal potential acceleration possibilities that can overcome these limitations [6]. In parallel to the development of computer graphics and despite their non-interactivity, optical and digital holography have created new fields, including interferometry, copy protection, data storage, holographic optical elements, and display holograms. Especially display holography has conquered several application domains. Museum exhibits often use optical holograms because they can present 3D objects with almost no loss in visual quality. In contrast to most stereoscopic or autostereoscopic graphics displays, holographic images can provide all depth cues—perspective, binocular disparity, motion parallax, convergence, and accommodation—and theoretically can be viewed simultaneously from an unlimited number of positions. Displaying artifacts virtually removes the need to build physical replicas of the original objects. In addition, optical holograms can be used to make engineering, medical, dental, archaeological, and other recordings—for teaching, training, experimentation and documentation. Archaeologists, for example, use optical holograms to archive and investigate ancient artifacts [7,8]. Scientists can use hologram copies to perform their research without having access to the original artifacts or settling for inaccurate replicas. Optical holograms can store a massive amount of information on a thin holographic emulsion. This technology can record and reconstruct a 3D scene with almost no loss in quality. Natural color holographic silver halide emulsion with grain sizes of 8nm is today's state-of-the-art [14]. Today, computer graphics and raster displays offer a megapixel resolution and the interactive rendering of megabytes of data. Optical holograms, however, provide a terapixel resolution and are able to present an information content in the range of terabytes in real-time. Both are dimensions that will not be reached by computer graphics and conventional displays within the next years - even if Moore's law proves to hold in future. Obviously, one has to make a decision between interactivity and quality when choosing a display technology for a particular application. While some applications require high visual realism and real-time presentation (that cannot be provided by computer graphics), others depend on user interaction (which is not possible with optical and digital holograms). Consequently, holography and computer graphics are being used as tools to solve individual research, engineering, and presentation problems within several domains. Up until today, however, these tools have been applied separately. The intention of the project which is summarized in this chapter is to combine both technologies to create a powerful tool for science, industry and education. This has been referred to as HoloGraphics. Several possibilities have been investigated that allow merging computer generated graphics and holograms [1]. The goal is to combine the advantages of conventional holograms (i.e. extremely high visual quality and realism, support for all depth queues and for multiple observers at no computational cost, space efficiency, etc.) with the advantages of today's computer graphics capabilities (i.e. interactivity, real-time rendering, simulation and animation, stereoscopic and autostereoscopic presentation, etc.). The results of these investigations are presented in this chapter.}, subject = {Erweiterte Realit{\"a}t }, language = {en} } @incollection{Bimber2006, author = {Bimber, Oliver}, title = {Projector-Based Augmentation}, series = {Emerging Technologies of Augmented Reality: Interfaces \& Design}, booktitle = {Emerging Technologies of Augmented Reality: Interfaces \& Design}, doi = {10.25643/bauhaus-universitaet.735}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7353}, year = {2006}, abstract = {Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments - without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces.}, subject = {Erweiterte Realit{\"a}t }, language = {en} } @unpublished{GrundhoeferBimber2006, author = {Grundh{\"o}fer, Anselm and Bimber, Oliver}, title = {Real-Time Adaptive Radiometric Compensation}, doi = {10.25643/bauhaus-universitaet.784}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7848}, year = {2006}, abstract = {Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. With the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. They will lead to clipping errors and to visible artifacts on the surface. In this article, we present a novel algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time.}, subject = {Maschinelles Sehen}, language = {en} } @unpublished{WetzsteinBimber2006, author = {Wetzstein, Gordon and Bimber, Oliver}, title = {A Generalized Approach to Radiometric}, doi = {10.25643/bauhaus-universitaet.762}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7625}, year = {2006}, abstract = {We propose a novel method that applies the light transport matrix for performing an image-based radiometric compensation which accounts for all possible types of light modulation. For practical application the matrix is decomposed into clusters of mutually influencing projector and camera pixels. The compensation is modeled as a linear system that can be solved with respect to the projector patterns. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes interactive compensation rates possible. Our generalized method unifies existing approaches that address individual problems. Based on examples, we show that it is possible to project corrected images onto complex surfaces such as an inter-reflecting statuette, glossy wallpaper, or through highly-refractive glass. Furthermore, we illustrate that a side-effect of our approach is an increase in the overall sharpness of defocused projections.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @misc{Wetzstein2006, type = {Master Thesis}, author = {Wetzstein, Gordon}, title = {Radiometric Compensation of Global Illumination Effects with Projector-Camera Systems}, doi = {10.25643/bauhaus-universitaet.810}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8106}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2006}, abstract = {Projector-based displays have been evolving tremendously in the last decade. Reduced costs and increasing capabilities have let to a widespread use for home entertainment and scientific visualization. The rapid development is continuing - techniques that allow seamless projection onto complex everyday environments such as textured walls, window curtains or bookshelfs have recently been proposed. Although cameras enable a completely automatic calibration of the systems, all previously described techniques rely on a precise mapping between projector and camera pixels. Global illumination effects such as reflections, refractions, scattering, dispersion etc. are completely ignored since only direct illumination is taken into account. We propose a novel method that applies the light transport matrix for performing an image-based radiometric compensation which accounts for all possible lighting effects. For practical application the matrix is decomposed into clusters of mutually influencing projector and camera pixels. The compensation is modeled as a linear equation system that can be solved separately for each cluster. For interactive compensation rates this model is adapted to enable an efficient implementation on programmable graphics hardware. Applying the light transport matrix's pseudo-inverse allows to separate the compensation into a computational expensive preprocessing step (computing the pseudo-inverse) and an on-line matrix-vector multiplication. The generalized mathematical foundation for radiometric compensation with projector-camera systems is validated with several experiments. We show that it is possible to project corrected imagery onto complex surfaces such as an inter-reflecting statuette and glass. The overall sharpness of defocused projections is increased as well. Using the proposed optimization for GPUs, real-time framerates are achieved.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @article{GrundhoeferSeegerHaentschetal.2007, author = {Grundh{\"o}fer, Anselm and Seeger, Manja and H{\"a}ntsch, Ferry and Bimber, Oliver}, title = {Coded Projection and Illumination for Television Studios}, organization = {Bimber, Fak. M, BUW}, doi = {10.25643/bauhaus-universitaet.800}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8005}, year = {2007}, abstract = {We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker technique}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @unpublished{ZollmannBimber2007, author = {Zollmann, Stefanie and Bimber, Oliver}, title = {Imperceptible Calibration for Radiometric Compensation}, doi = {10.25643/bauhaus-universitaet.809}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8094}, year = {2007}, abstract = {We present a novel multi-step technique for imperceptible geometry and radiometry calibration of projector-camera systems. Our approach can be used to display geometry and color corrected images on non-optimized surfaces at interactive rates while simultaneously performing a series of invisible structured light projections during runtime. It supports disjoint projector-camera configurations, fast and progressive improvements, as well as real-time correction rates of arbitrary graphical content. The calibration is automatically triggered when mis-registrations between camera, projector and surface are detected.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @techreport{KurzHaentschGrosseetal.2007, author = {Kurz, Daniel and H{\"a}ntsch, Ferry and Grosse, Max and Schiewe, Alexander and Bimber, Oliver}, title = {Laser Pointer Tracking in Projector-Augmented Architectural Environments}, doi = {10.25643/bauhaus-universitaet.818}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8183}, year = {2007}, abstract = {We present a system that applies a custom-built pan-tilt-zoom camera for laser-pointer tracking in arbitrary real environments. Once placed in a building environment, it carries out a fully automatic self-registration, registrations of projectors, and sampling of surface parameters, such as geometry and reflectivity. After these steps, it can be used for tracking a laser spot on the surface as well as an LED marker in 3D space, using inter-playing fisheye context and controllable detail cameras. The captured surface information can be used for masking out areas that are critical to laser-pointer tracking, and for guiding geometric and radiometric image correction techniques that enable a projector-based augmentation on arbitrary surfaces. We describe a distributed software framework that couples laser-pointer tracking for interaction, projector-based AR as well as video see-through AR for visualizations with the domain specific functionality of existing desktop tools for architectural planning, simulation and building surveying.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @techreport{GrundhoeferSeegerHaentschetal.2007, author = {Grundh{\"o}fer, Anselm and Seeger, Manja and H{\"a}ntsch, Ferry and Bimber, Oliver}, title = {Dynamic Adaptation of Projected Imperceptible Codes}, doi = {10.25643/bauhaus-universitaet.816}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8168}, year = {2007}, abstract = {In this paper we present a novel adaptive imperceptible pattern projection technique that considers parameters of human visual perception. A coded image that is invisible for human observers is temporally integrated into the projected image, but can be reconstructed by a synchronized camera. The embedded code is dynamically adjusted on the fly to guarantee its non-perceivability and to adapt it to the current camera pose. Linked with real-time flash keying, for instance, this enables in-shot optical tracking using a dynamic multi-resolution marker technique. A sample prototype is realized that demonstrates the application of our method in the context of augmentations in television studios.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} }