@phdthesis{Salzmann2010, author = {Salzmann, Holger}, title = {Collaboration in Co-located Automotive Applications}, doi = {10.25643/bauhaus-universitaet.1422}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100712-15102}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2010}, abstract = {Virtual reality systems offer substantial potential in supporting decision processes based purely on computer-based representations and simulations. The automotive industry is a prime application domain for such technology, since almost all product parts are available as three-dimensional models. The consideration of ergonomic aspects during assembly tasks, the evaluation of humanmachine interfaces in the car interior, design decision meetings as well as customer presentations serve as but a few examples, wherein the benefit of virtual reality technology is obvious. All these tasks require the involvement of a group of people with different expertises. However, current stereoscopic display systems only provide correct 3D-images for a single user, while other users see a more or less distorted virtual model. This is a major reason why these systems still face limited acceptance in the automotive industry. They need to be operated by experts, who have an advanced understanding of the particular interaction techniques and are aware of the limitations and shortcomings of virtual reality technology. The central idea of this thesis is to investigate the utility of stereoscopic multi-user systems for various stages of the car development process. Such systems provide multiple users with individual and perspectively correct stereoscopic images, which are key features and serve as the premise for the appropriate support of collaborative group processes. The focus of the research is on questions related to various aspects of collaboration in multi-viewer systems such as verbal communication, deictic reference, embodiments and collaborative interaction techniques. The results of this endeavor provide scientific evidence that multi-viewer systems improve the usability of VR-applications for various automotive scenarios, wherein co-located group discussions are necessary. The thesis identifies and discusses the requirements for these scenarios as well as the limitations of applying multi-viewer technology in this context. A particularly important gesture in real-world group discussions is referencing an object by pointing with the hand and the accuracy which can be expected in VR is made evident. A novel two-user seating buck is introduced for the evaluation of ergonomics in a car interior and the requirements on avatar representations for users sitting in a car are identified. Collaborative assembly tasks require high precision. The novel concept of a two-user prop significantly increases the quality of such a simulation in a virtual environment and allows ergonomists to study the strain on workers during an assembly sequence. These findings contribute toward an increased acceptance of VR-technology for collaborative development meetings in the automotive industry and other domains.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @phdthesis{Lux, author = {Lux, Christopher}, title = {A Data-Virtualization System for Large Model Visualization}, doi = {10.25643/bauhaus-universitaet.1985}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130725-19855}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {211}, abstract = {Interactive scientific visualizations are widely used for the visual exploration and examination of physical data resulting from measurements or simulations. Driven by technical advancements of data acquisition and simulation technologies, especially in the geo-scientific domain, large amounts of highly detailed subsurface data are generated. The oil and gas industry is particularly pushing such developments as hydrocarbon reservoirs are increasingly difficult to discover and exploit. Suitable visualization techniques are vital for the discovery of the reservoirs as well as their development and production. However, the ever-growing scale and complexity of geo-scientific data sets result in an expanding disparity between the size of the data and the capabilities of current computer systems with regard to limited memory and computing resources. In this thesis we present a unified out-of-core data-virtualization system supporting geo-scientific data sets consisting of multiple large seismic volumes and height-field surfaces, wherein each data set may exceed the size of the graphics memory or possibly even the main memory. Current data sets fall within the range of hundreds of gigabytes up to terabytes in size. Through the mutual utilization of memory and bandwidth resources by multiple data sets, our data-management system is able to share and balance limited system resources among different data sets. We employ multi-resolution methods based on hierarchical octree and quadtree data structures to generate level-of-detail working sets of the data stored in main memory and graphics memory for rendering. The working set generation in our system is based on a common feedback mechanism with inherent support for translucent geometric and volumetric data sets. This feedback mechanism collects information about required levels of detail during the rendering process and is capable of directly resolving data visibility without the application of any costly occlusion culling approaches. A central goal of the proposed out-of-core data management system is an effective virtualization of large data sets. Through an abstraction of the level-of-detail working sets, our system allows developers to work with extremely large data sets independent of their complex internal data representations and physical memory layouts. Based on this out-of-core data virtualization infrastructure, we present distinct rendering approaches for specific visualization problems of large geo-scientific data sets. We demonstrate the application of our data virtualization system and show how multi-resolution data can be treated exactly the same way as regular data sets during the rendering process. An efficient volume ray casting system is presented for the rendering of multiple arbitrarily overlapping multi-resolution volume data sets. Binary space-partitioning volume decomposition of the bounding boxes of the cube-shaped volumes is used to identify the overlapping and non-overlapping volume regions in order to optimize the rendering process. We further propose a ray casting-based rendering system for the visualization of geological subsurface models consisting of multiple very detailed height fields. The rendering of an entire stack of height-field surfaces is accomplished in a single rendering pass using a two-level acceleration structure, which combines a minimum-maximum quadtree for empty-space skipping and sorted lists of depth intervals to restrict ray intersection searches to relevant height fields and depth ranges. Ultimately, we present a unified rendering system for the visualization of entire geological models consisting of highly detailed stacked horizon surfaces and massive volume data. We demonstrate a single-pass ray casting approach facilitating correct visual interaction between distinct translucent model components, while increasing the rendering efficiency by reducing processing overhead of potentially invisible parts of the model. The combination of image-order rendering approaches and the level-of-detail feedback mechanism used by our out-of-core data-management system inherently accounts for occlusions of different data types without the application of costly culling techniques. The unified out-of-core data-management and virtualization infrastructure considerably facilitates the implementation of complex visualization systems. We demonstrate its applicability for the visualization of large geo-scientific data sets using output-sensitive rendering techniques. As a result, the magnitude and multitude of data sets that can be interactively visualized is significantly increased compared to existing approaches.}, subject = {Computer Graphics}, language = {en} } @phdthesis{Springer2008, author = {Springer, Jan P.}, title = {Multi-Frame Rate Rendering}, doi = {10.25643/bauhaus-universitaet.1371}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20081127-14395}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2008}, abstract = {Multi-frame rate rendering is a parallel rendering technique that renders interactive parts of a scene on one graphics card while the rest of the scene is rendered asynchronously on a second graphics card. The resulting color and depth images of both render processes are composited, by optical superposition or digital composition, and displayed. The results of a user study confirm that multi-frame rate rendering can significantly improve the interaction performance. Multi-frame rate rendering is naturally implemented on a graphics cluster. With the recent availability of multiple graphics cards in standalone systems the method can also be implemented on a single computer system where memory bandwidth is much higher compared to off-the-shelf networking technology. This decreases overall latency and further improves interactivity. Multi-frame rate rendering was also investigated on a single graphics processor by interleaving the rendering streams for the interactive elements and the rest of the scene. This approach enables the use of multi-frame rate rendering on low-end graphics systems such as laptops, mobile phones, and PDAs. Advanced multi-frame rate rendering techniques reduce the limitations of the basic approach. The interactive manipulation of light sources and their parameters affects the entire scene. A multi-GPU deferred shading method is presented that splits the rendering task into a rasterization and lighting pass and assigns the passes to the appropriate image generators such that light manipulations at high frame rates become possible. A parallel volume rendering technique allows the manipulation of objects inside a translucent volume at high frame rates. This approach is useful for example in medical applications, where small probes need to be positioned inside a computed-tomography image. Due to the asynchronous nature of multi-frame rate rendering artifacts may occur during migration of objects from the slow to the fast graphics card, and vice versa. Proper state management allows to almost completely avoid these artifacts. Multi-frame rate rendering significantly improves the interactive manipulation of objects and lighting effects. This leads to a considerable increase of the size for 3D scenes that can be manipulated compared to conventional methods.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @phdthesis{Riehmann, author = {Riehmann, Patrick}, title = {Advanced Visual Interfaces for Informed Decision-Making}, publisher = {Patrick Riehmann}, doi = {10.25643/bauhaus-universitaet.2454}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150907-24542}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {132}, abstract = {This thesis presents new interactive visualization techniques and systems intended to support users with real-world decisions such as selecting a product from a large variety of similar offerings, finding appropriate wording as a non-native speaker, and assessing an alleged case of plagiarism. The Product Explorer is a significantly improved interactive Parallel Coordinates display for facilitating the product selection process in cases where many attributes and numerous alternatives have to be considered. A novel visual representation for categorical and ordered data with only few occurring values, the so-called extended areas, in combination with cubic curves for connecting the parallel axes, are crucial for providing an effective overview of the entire dataset and to facilitate the tracing of individual products. The visual query interface supports users in quickly narrowing down the product search to a small subset or even a single product. The scalability of the approach towards a large number of attributes and products is enhanced by the possibility of setting some constraints on final attributes and, therefore, reducing the number of considered attributes and data items. Furthermore, an attribute repository allows users to focus on the most important attributes at first and to bring in additional criteria for product selection later in the decision process. A user study confirmed that the Product Explorer is indeed an excellent tool for its intended purpose for casual users. The Wordgraph is a layered graph visualization for the interactive exploration of search results for complex keywords-in-context queries. The system relies on the Netspeak web service and is designed to support non-native speakers in finding customary phrases. Uncertainties about the commonness of phrases are expressed with the help of wildcard-based queries. The visualization presents the alternatives for the wildcards in a multi-column layout: one column per wildcard with the other query fragments in between. The Wordgraph visualization displays the sorted results for all wildcards at once by appropriately arranging the words of each column. A user study confirmed that this is a significant advantage over simple textual result lists. Furthermore, visual interfaces to filter, navigate, and expand the graph allow interactive refinement and expansion of wildcard-containing queries. Furthermore, this thesis presents an advanced visual analysis tool for assessing and presenting alleged cases of plagiarism and provides a three-level approach for exploring the so-called finding spots in their context. The overview shows the relationship of the entire suspicious document to the set of source documents. An intermediate glyph-based view reveals the structural and textual differences and similarities of a set of finding spots and their corresponding source text fragments. Eventually, the actual fragments of the finding spot can be shown in a side-by-side view with a novel structured wrapping of both the source, as well as the suspicious text. The three different levels of detail are tied together by versatile navigation and selection operations. Reviews with plagiarism experts confirm that this tool can effectively support their workflow and provides a significant improvement over existing static visualizations for assessing and presenting plagiarism cases. The three main contributions of this research have a lot in common aside from being carefully designed and scientifically grounded solutions to real-world decision problems. The first two visualizations facilitate the decision for a single possibility out of many alternatives, whereas the latter ones deal with text at varying levels of detail. All visual representations are clearly structured based on horizontal and vertical layers contained in a single view and they all employ edges for depicting the most important relationships between attributes, words, or different levels of detail. A detailed analysis considering the context of the established decision-making literature reveals that important steps of common decision models are well-supported by the three visualization systems presented in this thesis.}, subject = {Informatik}, language = {en} } @article{KreskowskiRendleFroehlich, author = {Kreskowski, Adrian and Rendle, Gareth and Fr{\"o}hlich, Bernd}, title = {Efficient Direct Isosurface Rasterization of Scalar Volumes}, series = {Computer Graphics Forum}, volume = {2022}, journal = {Computer Graphics Forum}, number = {Volume 4, Issue 7}, publisher = {Wiley Blackwell}, address = {Oxford}, doi = {10.1111/cgf.14670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230525-63835}, pages = {215 -- 226}, abstract = {In this paper we propose a novel and efficient rasterization-based approach for direct rendering of isosurfaces. Our method exploits the capabilities of task and mesh shader pipelines to identify subvolumes containing potentially visible isosurface geometry, and to efficiently extract primitives which are consumed on the fly by the rasterizer. As a result, our approach requires little preprocessing and negligible additional memory. Direct isosurface rasterization is competitive in terms of rendering performance when compared with ray-marching-based approaches, and significantly outperforms them for increasing resolution in most situations. Since our approach is entirely rasterization based, it affords straightforward integration into existing rendering pipelines, while allowing the use of modern graphics hardware features, such as multi-view stereo for efficient rendering of stereoscopic image pairs for geometry-bound applications. Direct isosurface rasterization is suitable for applications where isosurface geometry is highly variable, such as interactive analysis scenarios for static and dynamic data sets that require frequent isovalue adjustment.}, subject = {Rendering}, language = {en} }