@article{BandJanizadehChandraPaletal., author = {Band, Shahab S. and Janizadeh, Saeid and Chandra Pal, Subodh and Saha, Asish and Chakrabortty, Rabbin and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility}, series = {Sensors}, volume = {2020}, journal = {Sensors}, number = {Volume 20, issue 19, article 5609}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s20195609}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43341}, pages = {1 -- 27}, abstract = {This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70\%) and testing (30\%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.}, subject = {Geoinformatik}, language = {en} } @article{MengNomanQasemShokrietal., author = {Meng, Yinghui and Noman Qasem, Sultan and Shokri, Manouchehr and Shamshirband, Shahaboddin}, title = {Dimension Reduction of Machine Learning-Based Forecasting Models Employing Principal Component Analysis}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 8, article 1233}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8081233}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200811-42125}, pages = {15}, abstract = {In this research, an attempt was made to reduce the dimension of wavelet-ANFIS/ANN (artificial neural network/adaptive neuro-fuzzy inference system) models toward reliable forecasts as well as to decrease computational cost. In this regard, the principal component analysis was performed on the input time series decomposed by a discrete wavelet transform to feed the ANN/ANFIS models. The models were applied for dissolved oxygen (DO) forecasting in rivers which is an important variable affecting aquatic life and water quality. The current values of DO, water surface temperature, salinity, and turbidity have been considered as the input variable to forecast DO in a three-time step further. The results of the study revealed that PCA can be employed as a powerful tool for dimension reduction of input variables and also to detect inter-correlation of input variables. Results of the PCA-wavelet-ANN models are compared with those obtained from wavelet-ANN models while the earlier one has the advantage of less computational time than the later models. Dealing with ANFIS models, PCA is more beneficial to avoid wavelet-ANFIS models creating too many rules which deteriorate the efficiency of the ANFIS models. Moreover, manipulating the wavelet-ANFIS models utilizing PCA leads to a significant decreasing in computational time. Finally, it was found that the PCA-wavelet-ANN/ANFIS models can provide reliable forecasts of dissolved oxygen as an important water quality indicator in rivers.}, subject = {Maschinelles Lernen}, language = {en} }