@phdthesis{Peters, author = {Peters, Simone}, title = {The Influence of Power Ultrasound on Setting and Strength Development of Cement Suspensions}, isbn = {ISBN 978-3-00-055602-9}, doi = {10.25643/bauhaus-universitaet.2744}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170210-27446}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {146}, abstract = {Ein aktuelles Thema in der Forschung der Betonindustrie ist die gezielte Steuerung des Erstarrens und der Entwicklung der (Fr{\"u}h)Festigkeit von Betonen und M{\"o}rteln. Aus {\"o}konomischer Sicht sind außerdem die Reduktion der CO2-Emission und die Schonung von Ressourcen und Energie wichtige Forschungsschwerpunkte. Eine M{\"o}glichkeit zum Erreichen dieser Ziele ist es, die Reaktivit{\"a}t/Hydratation der silikatischen Klinkerphasen gezielt anzuregen. Neben den bereits bekannten M{\"o}glichkeiten der Hydratationsbeschleunigung (u.a. W{\"a}rmebehandlung, Zugabe von Salzen) bietet die Anwendung von Power-Ultraschall (PUS) eine weitere Alternative zur Beschleunigung der Zementhydratation. Da bis zum jetzigen Zeitpunkt noch keine Erfahrungen zum Einsatz von PUS in der Zementchemie vorliegen, sollen mit der vorliegenden Arbeit grundlegende Kenntnisse zum Einfluss von PUS auf das Fließ- und Erstarrungsverhalten von Zementsuspensionen erarbeitet werden. Dazu wurde die Arbeit in f{\"u}nf Hauptuntersuchungsabschnitte aufgeteilt. Im ersten Teil wurden optimale PUS-Parameter wie Amplitude und Energieeintrag ermittelt, die eine effiziente Beschleunigung der Portlandzement(CEM I)hydratation bei kurzen Beschallzeiten und begrenzter Zementleimtemperaturerh{\"o}hung erlauben. Mit Hilfe unabh{\"a}ngiger Untersuchungsmethoden (Bestimmung des Erstarrungsbeginns, der Festigkeitsentwicklung, zerst{\"o}rungsfreier Ultraschallpr{\"u}fung, isothermer W{\"a}rmeflusskalorimetrie, hochaufl{\"o}sender Rasterelektronmikroskopie (REM) wurde die Wirkung von PUS auf den Hydratationsverlauf von CEM I-Suspensionen charakterisiert. Die Ergebnisse zeigen, dass die Behandlung von CEM I-Suspensionen mit PUS grunds{\"a}tzlich ein beschleunigtes Erstarren und eine beschleunigte (Fr{\"u}h)Festigkeitsentwicklung hervorruft. Anhand von REM-Untersuchungen konnte eindeutig nachgewiesen werden, dass die Beschleunigung der CEM I-Hydratation mit einer beschleunigten Hydratation der Hauptklinkerphase Alit korreliert. Auf Grundlage dieser Erkenntnisse wurden die Ursachen der Aktivierung der Alithydratation untersucht. Dazu wurden Untersuchungen an Einzelsystemen des CEM I (silikatische Klinkerphase) durchgef{\"u}hrt. Es ist bekannt, das die Hydratation der Hauptklinkerphase Alit (in der reinen Form Tricalciumsilikat 3CaO*SiO2; C3S) durch L{\"o}sungs-/F{\"a}llungsreaktionen (Bildung von Calcium-Silikat-Hydrat Phasen, C-S-H Phasen) bestimmt wird. Mit Hilfe von Untersuchungen zur Aufl{\"o}sung (C3S) und Kristallbildung (C-S-H Phasen) in L{\"o}sungen und Suspensionen (Aufzeichnung der elektrischen Leitf{\"a}higkeit sowie Bestimmung der Ionenkonzentrationen der w{\"a}ssrigen Phase, REM-Charakterisierung der Pr{\"a}zipitate) wurde die Beeinflussung dieser durch eine PUS-Behandlung charakterisiert. Die Ergebnisse zeigen, dass in partikelfreien L{\"o}sungen (prim{\"a}re Keimbildung) eine PUS-Behandlung keinen Einfluss auf die Kinetik der Kristallisation von C-S-H Phasen hervorruft. Das heißt, auch die durch PUS eingetragene Energie reicht offensichtlich nicht aus, um in Abwesenheit von Oberfl{\"a}chen die C-S-H Phasen Bildung zu beschleunigen. Das weist darauf hin, dass die Bildung von C-S-H Phasen nicht durch eine Beschleunigung von Ionen in der L{\"o}sung (erh{\"o}hte Diffusion durch Anwendung von PUS) hervorgerufen wird. Eine Beschleunigung des Kristallisationsprozesses (Keimbildung und Wachstum von C-S-H Phasen) durch PUS wird nur in Anwesenheit von Partikeln in der L{\"o}sung (Suspension) erzielt. Das belegen Ergebnisse, bei denen die Bildung erster C-S-H Phasen bei geringer {\"U}bers{\"a}ttigung (heterogene Keimbildung, in Anwesenheit von Oberfl{\"a}chen) erfolgt. Unter diesen Bedingungen konnte gezeigt werden, dass PUS innerhalb der ersten 30 Minuten der Hydratation eine erh{\"o}hte F{\"a}llung von ersten C-S-H Phasen bewirkt. Diese fungieren dann vermutlich w{\"a}hrend der Haupthydratation als Keim bzw. geeignete Oberfl{\"a}che zum beschleunigten Aufwachsen von weiteren C-S-H Phasen. Weiterhin ist vorstellbar, dass (in Analogie zu anderen Bereichen der Sonochemie) PUS durch Kavitation Schockwellen hervorruft, welche Partikel und w{\"a}ssriges Medium beschleunigen und damit erh{\"o}hte Partikelbewegungen und -kollisionen induziert. Dies wiederum bewirkt, dass die anf{\"a}nglich auf der C3S-Oberfl{\"a}che gebildeten C-S-H Phasen teilweise wieder entfernt werden. Damit ist das Inl{\"o}sunggehen von Ca- und Si-Ionen aus dem C3S weiterhin m{\"o}glich. Um den genauen Mechanismus weiter zu charakterisieren sollten mit geeigneten Methoden weitere Untersuchungen durchgef{\"u}hrt werden. Im zweiten Teil der Arbeit wurde der Einfluss von PUS auf das Fließverhalten von CEM I-Suspensionen untersucht. Aus der Anwendung von PUS in anderen technischen Bereichen sind unter anderem Effekte wie das Entl{\"u}ften, das Homogenisieren und das Dispergieren von Suspensionen und Emulsionen mittels PUS bekannt. Mit Hilfe der Bestimmung des Luftporengehaltes, Sedimentationsversuchen und cryo-SEM Untersuchungen wurde der Einfluss von PUS auf CEM I-Suspensionen charakterisiert. Die Ergebnisse belegen, dass durch PUS eine verbesserte Homogenit{\"a}t und Dispergierung der CEM I-Suspension erzielt wird. Damit wird f{\"u}r CEM I-Suspensionen unterschiedlichster w/z-Werte eine verbesserte Fließf{\"a}higkeit festgestellt. Ergebnisse der Bestimmung von Ausbreitmaßen und Trichterauslaufzeiten zeigen, dass PUS einen direkten Einfluss vor allem auf die Viskosit{\"a}t der CEM I-Suspensionen besitzt. Werden Fließmitteln (FM) der CEM I-Suspension zugegeben, wird nicht in jedem Fall eine verbesserte Fließf{\"a}higkeit festgestellt. Hier scheint unter bestimmten Voraussetzungen (w/z-Wert, FM-Gehalt, PUS) die Reaktion zwischen Aluminat- und Sulfatphase des Klinkers gest{\"o}rt. Zur eindeutigen Kl{\"a}rung dieses Sachverhaltes bedarf es jedoch weiterer quantitativer Untersuchungen zum Reaktionsumsatz. Im dritten Teil der Arbeit wurden die am CEM I gewonnenen Erkenntnisse zum Einfluss von PUS auf die Hydratation an Portland-H{\"u}ttensand(H{\"U}S)-Zement-Systemen verifiziert. Daf{\"u}r wurden auch in diesem Teil der Arbeit zun{\"a}chst die optimalen PUS-Parameter festgelegt und der Einfluss auf das Erstarrung- und Erh{\"a}rtungsverhalten dokumentiert. Untersuchungsmethoden sind unter anderem die Bestimmung des Erstarrungsbeginns und der (Fr{\"u}h)Festigkeitsentwicklung, Temperaturaufzeichnungen und isothermale W{\"a}rmeflusskalorimetrie sowie REM. Die Ergebnisse zeigen, dass auch die Reaktion von H{\"U}S-Zementen durch PUS beschleunigt wird. Weiterf{\"u}hrende Untersuchungen belegen, dass die erzielte Beschleunigung vorwiegend auf der Beschleunigung der Alitkomponente des CEM I beruht. Im Fokus der Teile vier und f{\"u}nf dieser Arbeit stand die Anwendbarkeit der PUS-Technik unter praktischen Bedingungen. Zum einen wurde die Anwendbarkeit von PUS in fertig gemischten M{\"o}rteln beurteilt. Anhand des Vergleichs wichtiger Frisch- und Festm{\"o}rteleigenschaften unterschiedlich hergestellter M{\"o}rtel (beschallt im Anschluss an konventionelle Mischtechnik, beschallt im Anschluss an Suspensionsmischtechnik mit anschließender Zumischung der Gesteinsk{\"o}rnung und nicht beschallt) wird gezeigt, dass im Fall von M{\"o}rteln mit hohem Leimanteil eine durch PUS induzierte beschleunigte Festigkeitsentwicklung auch mit herk{\"o}mmlichen Mischabl{\"a}ufen (ohne aufwendige Umstellung des Mischprozesses) m{\"o}glich ist. Abschließend wird untersucht, ob der Herstellungsprozess von Wandbauteilen im Fertigteilwerk durch den Einsatz von PUS optimiert werden kann und ob eine Einbindung der PUS-Technik in den Fertigungsprozess ohne gr{\"o}ßeren Aufwand m{\"o}glich ist. Dazu wurden in einem ersten Schritt die Frisch- und Festbetoneigenschaften eines aktuell angewendeten selbstverdichtenden Betons im Labormaßstab (M{\"o}rtel) in Abh{\"a}ngigkeit einer PUS-Behandlung dokumentiert und mit der seiner unbeschallten Referenz verglichen. Aufgrund der durch PUS verursachten verbesserten Fließ- und Festigkeitseigenschaften kann die beschallte M{\"o}rtelrezeptur hinsichtlich Fließmittelgehalt und Dauer der W{\"a}rmebehandlung optimiert werden. Somit werden ca. 30 \% der Fließmittelzugabe und 40 \% der Dauer der W{\"a}rmebehandlung eigespart. Eine Einbindung der PUS-Technik in das betrachtete Fertigteilwerk ist nach {\"U}berpr{\"u}fung der konstruktiven Gegebenheiten der Fertigungsstrukturen ohne gr{\"o}ßeren Aufwand m{\"o}glich.}, subject = {Cement}, language = {en} } @phdthesis{Link, author = {Link, Tim}, title = {Entwicklung und Untersuchung von alternativen Dicalciumsilicat-Bindern auf der Basis von alpha-C2SH}, doi = {10.25643/bauhaus-universitaet.3722}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180205-37228}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {292}, abstract = {Um den Klimawandel zu begrenzen, m{\"u}ssen die CO2-Emissionen drastisch gesenkt werden [100]. Bis 2050 soll bei der Herstellung von Zement eine Einsparung um 51-60 \% auf 0,425-0,350 tCO2/tZement erfolgen [7]. Um dieses Ziel zu erreichen, sind alternative Bindemittelkonzepte notwendig [70]. Diese Arbeit widmet sich alternativen, hochreaktiven Dicalciumsilicat-Bindemitteln, die durch die thermische Aktivierung von α-Dicalcium-Silicat-Hydrat (α-C2SH) erzeugt werden. Das α-C2SH ist eine kristalline C S H-Phase, die im hydrothermalen Prozess, beispielsweise aus Branntkalk und Quarz, herstellbar ist. Die thermische Aktivierung kann bei sehr niedrigen Temperaturen erfolgen (>420 °C) und f{\"u}hrt zu einem Multiphasen-C2S-Binder. Als besonders reaktive Bestandteile k{\"o}nnen x-C2S und r{\"o}ntgenamorphe Anteile enthalten sein. Weiterhin k{\"o}nnen β C2S, γ C2S und Dellait (Ca6(SiO4)(Si2O7)(OH)2) entstehen. Im Rahmen der Arbeit wird zun{\"a}chst der Stand des Wissens zur Polymorphie und Hydratation von C2S zusammengefasst. Es werden bekannte C2S-basierte Bindemittelkonzepte vorgestellt und bewertet. Die Herstellung von C2S-Bindern wird experimentell im Labormaßstab untersucht. Dabei kommen unterschiedliche Autoklaven und ein Muffelofen zum Einsatz. Die Herstellungsparameter werden hinsichtlich Phasenbestand und Reaktivit{\"a}t optimiert. Die Bindemittel werden durch quantitative R{\"o}ntgen-Phasenanalyse (QXRD), Rasterelektronenmikroskopie (REM), N2-Adsorption (BET-Methode), Heliumpycnometer, Thermoanalyse (TGA/DSC) und 29Si-MAS- sowie 29Si-1H-CP/MAS-NMR-Spektroskopie charakterisiert. Das Hydratationsverhalten der Bindemittel wird vorrangig mithilfe von W{\"a}rmeflusskalorimetrie untersucht. Weiterhin werden in situ und ex situ XRD-, TGA/DSC- und REM-Untersuchungen durchgef{\"u}hrt. Anhand von zwei Bindemitteln wird die F{\"a}higkeit zur Erzielung hoher Festigkeiten demonstriert. Abschließend erfolgt eine Absch{\"a}tzung zu Energiebedarf und CO2-Emissionen f{\"u}r die Herstellung der untersuchten C2S-Binder. Die Ergebnisse zeigen, dass f{\"u}r eine hohe Reaktivit{\"a}t der Binder eine niedrige Brenntemperatur und ein geringer Wasserdampfpartialdruck w{\"a}hrend der thermischen Aktivierung entscheidend sind. Weiterhin muss das hydrothermal hergestellte α-C2SH eine m{\"o}glichst hohe spezifische Oberfl{\"a}che aufweisen. Diese Parameter beeinflussen den Phasenbestand und die phasenspezifische Reaktivit{\"a}t. Brenntemperaturen von ca. 420-500 °C f{\"u}hren zu hochreaktiven Bindern, die im Rahmen dieser Arbeit als Niedertemperatur-C2S-Binder bezeichnet werden. Temperaturen von ca. 600-800 °C f{\"u}hren zu Bindern mit geringerer Reaktivit{\"a}t, die im Rahmen dieser Arbeit als Hochtemperatur-C2S bezeichnet werden. H{\"o}here Brenntemperaturen (1000 °C) f{\"u}hren zu Bindemitteln, die innerhalb der ersten drei Tage keine hydraulische Aktivit{\"a}t zeigen. Die untersuchten Bindemittel k{\"o}nnen sehr hohe Reaktionsgeschwindigkeiten erreichen. Die W{\"a}rmeflusskalorimetrie deutet bei einigen Bindemitteln einen nahezu vollst{\"a}ndigen Umsatz innerhalb von drei Tagen an. Durch XRD wurde f{\"u}r einen Binder der vollst{\"a}ndige Verbrauch von x-C2S innerhalb von drei Tagen nachgewiesen. F{\"u}r einen mittels in-situ-XRD und W{\"a}rmeflusskalorimetrie untersuchten Binder wurde gezeigt, dass die Phasen vorrangig in der Reihenfolge r{\"o}ntgenamorph > x-C2S > β-C2S > γ-C2S hydratisieren. Hydratationsprodukte sind nadelige C S H-Phasen und Portlandit. Die Herstellung durch thermische Aktivierung von α-C2SH f{\"u}hrt zu tafeligen Bindemittelpartikeln, die teilweise Zwickelr{\"a}ume und Poren zwischen den einzelnen Partikeln einschließen. Um eine verarbeitbare Bindemittelpaste zu erzeugen, sind daher sehr hohe Wasser/Bindemittel-Werte (z. B. 1,4) erforderlich. Der Wasseranspruch kann durch Mahlung etwa auf das Niveau von Zement gesenkt werden. Die Druckfestigkeitsentwicklung wurde an zwei Niedertemperatur-C2S-Kompositbindern mit 40 \% Kalksteinmehl bzw. 40 \% H{\"u}ttensand untersucht. Aufgrund von theoretischen Betrachtungen zur Porosit{\"a}t in Abh{\"a}ngigkeit des w/b-Wertes wurde dieser auf 0,3 festgelegt. Durch Zugabe von PCE-Fließmittel wurde ein verarbeitbarer M{\"o}rtel erhalten. Die Festigkeitsentwicklung ist sehr schnell. Der Kalksteinmehl-Binder erreichte nach zwei Tagen 46 N/mm². Bis Tag 28 trat keine weitere Festigkeitssteigerung ein. Der H{\"u}ttensand-Binder erreichte nach zwei Tagen 62 N/mm². Durch die H{\"u}ttensandreaktion stieg die Festigkeit bis auf 85 N/mm² nach 28 Tagen an. F{\"u}r den Herstellungsprozess von Niedertemperatur-C2S-Binder wurden Energieverbr{\"a}uche und CO2-Emissionen abgesch{\"a}tzt. Es deutet sich an, dass, bezogen auf die Bindemittelmenge, keine wesentlichen Einsparungen im Vergleich zur Portlandzementherstellung m{\"o}glich sind. F{\"u}r die tats{\"a}chlichen Emissionen muss jedoch zus{\"a}tzlich die Leistungsf{\"a}higkeit der Bindemittel ber{\"u}cksichtigt werden. Die Leistungsf{\"a}higkeit kann als erforderliche Bindemittelmenge betrachtet werden, die je m³ Beton eingesetzt werden muss, um bestimmte Festigkeits-, Dauerhaftigkeits- und Verarbeitungseigenschaften zu erreichen. Aus verschiedenen Ver{\"o}ffentlichungen [94, 201, 206] wurde die These abgeleitet, dass die Leistungsf{\"a}higkeit eines Bindemittels maßgeblich von der C-S-H-Menge bestimmt wird, die w{\"a}hrend der Hydratation gebildet wird. Daher wird f{\"u}r NT-C2S-Binder eine außergew{\"o}hnlich hohe Leistungsf{\"a}higkeit erwartet. Auf Basis der Leistungsf{\"a}higkeitsthese verringern sich die abgesch{\"a}tzten CO2-Emissionen von NT-C2S-Bindern, sodass gegen{\"u}ber Portlandzement ein m{\"o}gliches Einsparpotenzial von 42 \% ermittelt wurde.}, subject = {Belit}, language = {de} }