@phdthesis{Kessler2018, author = {Keßler, Andrea}, title = {Matrix-free voxel-based finite element method for materials with heterogeneous microstructures}, doi = {10.25643/bauhaus-universitaet.3844}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190116-38448}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {113}, year = {2018}, abstract = {Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.}, subject = {Dissertation}, language = {en} } @phdthesis{AlYasiri2017, author = {Al-Yasiri, Zainab Riyadh Shaker}, title = {Function Theoretic Methods for the Analytical and Numerical Solution of Some Non-linear Boundary Value Problems with Singularities}, doi = {10.25643/bauhaus-universitaet.3898}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190506-38987}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {164}, year = {2017}, abstract = {The p-Laplace equation is a nonlinear generalization of the well-known Laplace equation. It is often used as a model problem for special types of nonlinearities, and therefore it can be seen as a bridge between very general nonlinear equations and the linear Laplace equation, too. It appears in many problems for instance in the theory of non-Newtonian fluids and fluid dynamics or in rockfill dam problems, as well as in special problems of image restoration and image processing. The aim of this thesis is to solve the p-Laplace equation for 1 < p < 2, as well as for 2 < p < 3 and to find strong solutions in the framework of Clifford analysis. The idea is to apply a hypercomplex integral operator and special function theoretic methods to transform the p-Laplace equation into a p-Dirac equation. We consider boundary value problems for the p-Laplace equation and transfer them to boundary value problems for a p-Dirac equation. These equations will be solved iteratively by applying Banach's fixed-point principle. Applying operator-theoretical methods for the p-Dirac equation, the existence and uniqueness of solutions in certain Sobolev spaces will be proved. In addition, using a finite difference approach on a uniform lattice in the plane, the fundamental solution of the Cauchy-Riemann operator and its adjoint based on the fundamental solution of the Laplacian will be calculated. Besides, we define gener- alized discrete Teodorescu transform operators, which are right-inverse to the discrete Cauchy-Riemann operator and its adjoint in the plane. Furthermore, a new formula for generalized discrete boundary operators (analogues of the Cauchy integral operator) will be considered. Based on these operators a new version of discrete Borel-Pompeiu formula is formulated and proved. This is the basis for an operator calculus that will be applied to the numerical solution of the p-Dirac equation. Finally, numerical results will be presented showing advantages and problems of this approach.}, subject = {Finite-Differenzen-Methode}, language = {en} }