@phdthesis{Hommel, author = {Hommel, Angela}, title = {Diskret holomorphe Funktionen und deren Bedeutung bei der L{\"o}sung von Differenzengleichungen}, doi = {10.25643/bauhaus-universitaet.3784}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180827-37846}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Auf der Grundlage diskreter Cauchy-Riemann Operatoren werden diskret holomorphe Funktionen definiert und detailliert studiert. Darauf aufbauend wird die L{\"o}sung von Differenzengleichungen mit Hilfe der diskret holomorphen Funktionen beschrieben.}, subject = {Differenzengleichung}, language = {de} } @phdthesis{AlYasiri2017, author = {Al-Yasiri, Zainab Riyadh Shaker}, title = {Function Theoretic Methods for the Analytical and Numerical Solution of Some Non-linear Boundary Value Problems with Singularities}, doi = {10.25643/bauhaus-universitaet.3898}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190506-38987}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {164}, year = {2017}, abstract = {The p-Laplace equation is a nonlinear generalization of the well-known Laplace equation. It is often used as a model problem for special types of nonlinearities, and therefore it can be seen as a bridge between very general nonlinear equations and the linear Laplace equation, too. It appears in many problems for instance in the theory of non-Newtonian fluids and fluid dynamics or in rockfill dam problems, as well as in special problems of image restoration and image processing. The aim of this thesis is to solve the p-Laplace equation for 1 < p < 2, as well as for 2 < p < 3 and to find strong solutions in the framework of Clifford analysis. The idea is to apply a hypercomplex integral operator and special function theoretic methods to transform the p-Laplace equation into a p-Dirac equation. We consider boundary value problems for the p-Laplace equation and transfer them to boundary value problems for a p-Dirac equation. These equations will be solved iteratively by applying Banach's fixed-point principle. Applying operator-theoretical methods for the p-Dirac equation, the existence and uniqueness of solutions in certain Sobolev spaces will be proved. In addition, using a finite difference approach on a uniform lattice in the plane, the fundamental solution of the Cauchy-Riemann operator and its adjoint based on the fundamental solution of the Laplacian will be calculated. Besides, we define gener- alized discrete Teodorescu transform operators, which are right-inverse to the discrete Cauchy-Riemann operator and its adjoint in the plane. Furthermore, a new formula for generalized discrete boundary operators (analogues of the Cauchy integral operator) will be considered. Based on these operators a new version of discrete Borel-Pompeiu formula is formulated and proved. This is the basis for an operator calculus that will be applied to the numerical solution of the p-Dirac equation. Finally, numerical results will be presented showing advantages and problems of this approach.}, subject = {Finite-Differenzen-Methode}, language = {en} } @misc{Hamzah, type = {Master Thesis}, author = {Hamzah, Abdulrazzak}, title = {L{\"o}sung von Randwertaufgaben der Bruchmechanik mit Hilfe einer approximationsbasierten Kopplung zwischen der Finite-Elemente-Methode und Methoden der komplexen Analysis}, doi = {10.25643/bauhaus-universitaet.4093}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200211-40936}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Das Hauptziel der vorliegenden Arbeit war es, eine stetige Kopplung zwischen der ananlytischen und numerischen L{\"o}sung von Randwertaufgaben mit Singularit{\"a}ten zu realisieren. Durch die inter-polationsbasierte gekoppelte Methode kann eine globale C0 Stetigkeit erzielt werden. F{\"u}r diesen Zweck wird ein spezielle finite Element (Kopplungselement) verwendet, das die Stetigkeit der L{\"o}sung sowohl mit dem analytischen Element als auch mit den normalen CST Elementen gew{\"a}hrleistet. Die interpolationsbasierte gekoppelte Methode ist zwar f{\"u}r beliebige Knotenanzahl auf dem Interface ΓAD anwendbar, aber es konnte durch die Untersuchung von der Interpolationsmatrix und numerische Simulationen festgestellt werden, dass sie schlecht konditioniert ist. Um das Problem mit den numerischen Instabilit{\"a}ten zu bew{\"a}ltigen, wurde eine approximationsbasierte Kopplungsmethode entwickelt und untersucht. Die Stabilit{\"a}t dieser Methode wurde anschließend anhand der Untersuchung von der Gramschen Matrix des verwendeten Basissystems auf zwei Intervallen [-π,π] und [-2π,2π] beurteilt. Die Gramsche Matrix auf dem Intervall [-2π,2π] hat einen g{\"u}nstigeren Konditionszahl in der Abh{\"a}ngigkeit von der Anzahl der Kopplungsknoten auf dem Interface aufgewiesen. Um die dazu geh{\"o}rigen numerischen Instabilit{\"a}ten ausschließen zu k{\"o}nnen wird das Basissystem mit Hilfe vom Gram-Schmidtschen Orthogonalisierungsverfahren auf beiden Intervallen orthogonalisiert. Das orthogonale Basissystem l{\"a}sst sich auf dem Intervall [-2π,2π] mit expliziten Formeln schreiben. Die Methode des konsistentes Sampling, die h{\"a}ufig in der Nachrichtentechnik verwendet wird, wurde zur Realisierung von der approximationsbasierten Kopplung herangezogen. Eine Beschr{\"a}nkung dieser Methode ist es, dass die Anzahl der Sampling-Basisfunktionen muss gleich der Anzahl der Wiederherstellungsbasisfunktionen sein. Das hat dazu gef{\"u}hrt, dass das eingef{\"u}hrt Basissys-tem (mit 2 n Basisfunktionen) nur mit n Basisfunktion verwendet werden kann. Zur L{\"o}sung diese Problems wurde ein alternatives Basissystems (Variante 2) vorgestellt. F{\"u}r die Verwendung dieses Basissystems ist aber eine Transformationsmatrix M n{\"o}tig und bei der Orthogonalisierung des Basissystems auf dem Intervall [-π,π] kann die Herleitung von dieser Matrix kompliziert und aufwendig sein. Die Formfunktionen wurden anschließend f{\"u}r die beiden Varianten hergeleitet und grafisch (f{\"u}r n = 5) dargestellt und wurde gezeigt, dass diese Funktionen die Anforderungen an den Formfunktionen erf{\"u}llen und k{\"o}nnen somit f{\"u}r die FE- Approximation verwendet werden. Anhand numerischer Simulationen, die mit der Variante 1 (mit Orthogonalisierung auf dem Intervall [-2π,2π]) durchgef{\"u}hrt wurden, wurden die grundlegenden Fragen (Beispielsweise: Stetigkeit der Verformungen auf dem Interface ΓAD, Spannungen auf dem analytischen Gebiet) {\"u}ber- pr{\"u}ft.}, subject = {Mathematik}, language = {de} }