@phdthesis{Cicek, author = {Cicek, Burhan}, title = {Revisiting vernacular technique: Engineering a low environmental impact earth stabilisation method}, doi = {10.25643/bauhaus-universitaet.4698}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220803-46989}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {195}, abstract = {The major drawbacks of earth as a construction material — such as its low water stability and moderate strength — have led mankind to stabilize earth. Different civilizations developed vernacular techniques mainly focussing on lime, pozzolan or gypsum stabilization. Recently, cement has become the most commonly used additive in earth stabilization as it improves the strength and durability of plain earth. Also, it is a familiar and globally available construction material. However, using cement as an additive reduces the environmental advantages of earth and run counter to global targets regarding the reduction of CO2 emissions. Alternatives to cement stabilization are currently neither efficient enough to reduce its environmental impact nor allow the possibility of obtaining better results than those of cement. As such, this thesis deals with the rediscovery of a reverse engineering approach for a low environmental impact earth stabilization technique, aiming to replace cement in earth stabilization. The first step in the method consists in a comprehensive review of earth stabilization with regards to earthen building standards and soil classification, which allows us to identify the research gap. The review showed that there is great potential in using other additives which result in similar improvements as those achieved by cement. However, the studies that have been conducted so far either use expansive soils, which are not suitable for earth constructions or artificial pozzolans that indirectly contribute to CO2 emissions. This is the main research gap. The key concept for the development in the second step of the method is to combine vernacular additives to both improve the strength and durability of plain earth and to reduce the CO2 emissions. Various earth-mixtures were prepared and both development and performance tests were done to investigate the performance of this technique. The laboratory analyses on mix-design have proven a high durability and the results show a remarkable increase in strength performance. Furthermore, a significant reduction in CO2 emissions in comparison to cement stabilization could be shown. The third step of the method discusses the results drawn from the experimental programme. In addition, the potential of the new earth mixture with regards to its usability in the field of building construction and architectural design is further elaborated on. The method used in this study is the first of its kind that allows investors to avoid the very time-consuming processes such as finding a suitable source for soil excavation and soil classification. The developed mixture has significant workability and suitability for production of stabilized earthen panels — the very first of its kind. Such a panel is practically feasible, reasonable, and could be integrated into earthen building standards in general and in particular to DIN 18948, which is related to earthen boards and published in 2018.}, subject = {Lehm}, language = {en} } @phdthesis{Heidenreich, author = {Heidenreich, Christian}, title = {Adaptivit{\"a}t von freigeformten Fl{\"a}chentragwerken - M{\"o}glichkeiten zur Steigerung der Effizienz von Faserverbundstrukturen im Bauwesen}, doi = {10.25643/bauhaus-universitaet.2551}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160314-25512}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {180}, abstract = {Die vorliegende Arbeit fokussiert die Optimierung freigeformter adaptiver Faserverbundfl{\"a}chentragwerke auf Basis einer entwickelten und auf einem parametrischen Gesamtmodell basierenden Entwurfsmethode. Die {\"U}bertragung adaptiver, nat{\"u}rlich inspirierter Vorg{\"a}nge stellt eine weitreichende Inspirationsquelle dar. Adaptive Tragwerke k{\"o}nnen unter Anwendung von Smart Materials als materialsparende, filigrane Tragwerke ausgef{\"u}hrt werden. Die Erf{\"u}llung der Grenzzust{\"a}nde der Tragf{\"a}higkeit und der Gebrauchstauglichkeit wird nicht allein {\"u}ber die Querschnittsabmessungen sichergestellt. Die notwendige Bauteilsteifigkeit kann vielmehr durch Eintragung von Aktivierungsenergie (Operational Energy) realisiert werden. Auf diese Weise kann die aufgrund der Bauteilabmessungen gebundene Energie (Embodied Energy) minimiert werden. Die entwickelte Entwurfsmethode erm{\"o}glicht die Auslegung und Optimierung materialminimierter Schalentragwerke in einem mehrstufigen Prozess. Hierbei wird aus tragwerksplanerischer Sicht die numerische Formfindung, die statische Berechnung und die Aktor- und Sensorpositionierung berechnet. Zudem werden Analysen hinsichtlich der Nachhaltigkeit auf Basis einer Lebenszyklusanalyse durchgef{\"u}hrt. Aufgrund der unterschiedlichen, sich aber gegenseitig beeinflussenden Kriterien, ist eine Optimierung durchzuf{\"u}hren. In der vorliegenden Arbeit wird ein Ansatz zur Definition zul{\"a}ssiger {\"O}kobilanzkennwerte von Smart Materials auf Basis der Energiedifferenz zwischen einer passiven und einer adaptiven Struktur vorgestellt. Anhand dieser Kennwerte kann die Entwicklung zuk{\"u}nftiger Smart Materials unter dem Aspekt der ganzheitlichen Nachhaltigkeit erfolgen. Die Allgemeing{\"u}ltigkeit und {\"U}bertragbarkeit der Entwurfsmethode auf weitere Tragsysteme im Bauwesen und speziell anderer Materialkonstellationen wird anhand verschiedener Beispiele aufgezeigt.}, subject = {Entwurf}, language = {de} } @phdthesis{Schuetz, author = {Sch{\"u}tz, Stephan}, title = {Von der Faser zum Haus : Das Potential von gefalteten Wabenplatten aus Papierwerkstoffen in ihrer architektonischen Anwendung}, doi = {10.25643/bauhaus-universitaet.3804}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181010-38044}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {223}, abstract = {Der vorliegende Text beschreibt die intensive Erforschung von Wabenplatten aus Papierwerkstoffen, die durch Faltprozesse neue r{\"a}umliche Zust{\"a}nde einnehmen k{\"o}nnen und somit ihr urspr{\"u}ngliches Anwendungsspektrum erweitern. Die gezeigten L{\"o}sungsans{\"a}tze bewegen sich dabei im Spannungsfeld von Architektur und Ingenieurbau, denn die gefalteten Bauteile sind nicht nur {\"a}ußerst tragf{\"a}hig sondern besitzen auch eine {\"a}sthetische Form. Die entwickelten Verfahren und Konstruktionen werden auf einem hohen architektonischen Niveau pr{\"a}sentiert und mit einfachen ingenieurtechnischen Methoden verifiziert. Zur L{\"o}sungsfindung werden geometrische Verfahren ebenso angewendet wie konstruktive Faustformeln und Recherchen aus Architektur und Forschung. Der Fokus der Arbeit liegt auf der Untersuchung von Faltungen in Wabenplatten. W{\"a}hrend der Auseinandersetzung mit der Thematik erschienen jedoch viele weitere Aspekte als sehr interessant und bearbeitungsw{\"u}rdig. Als theoretische Grundlage dieser Arbeit werden deshalb die geschichtliche Entwicklung und die gesellschaftliche Bedeutung von Papier und Papierwerkstoffen analysiert und deren Produktionsprozesse beleuchtet. Diese Vorgehensweise erm{\"o}glicht eine Einordnung des Potentials und der Bedeutung des Werkstoffs Papier. Der Kontext der Arbeit wird dadurch gest{\"a}rkt und f{\"u}hrt zu interessanten zuk{\"u}nftigen Forschungsans{\"a}tzen. Intensive Untersuchungen widmen sich der geometrischen Bestimmung von Faltungen in Wabenplatten aus Papierwerkstoffen sowie deren Manifestation als konstruktive Bauteile. Auch die statischen Eigenschaften der Elemente und ihr Konstruktionspotential werden erforscht und aufbereitet. Wichtige Impulse aus Forschung und Technik fließen in die Recherche der Arbeit ein und erlauben die Verortung der Ergebnisse im architektonischen Kontext. Versuchsreihen und Materialstudien an Prototypen belegen die Ergebnisse virtueller und rechnerischer Studien. Konzepte zur parametrischen Berechnung und Visualisierung der Forschungsergebnisse werden pr{\"a}sentiert und zeigen zukunftsf{\"a}hige Planungshilfen f{\"u}r die Industrie auf. Etliche Testreihen zu unterschiedlichsten Abdichtungskonzepten f{\"u}hren zur Realisierung eines sehenswerten Experimentalbaus. Er erlaubt die dauerhafte Untersuchung der entwickelten Bauteile unter realistischen Bedingungen und best{\"a}tigt deren Leistungsf{\"a}higkeit. Dadurch wird nicht nur ein dauerhaftes Monitoring und eine Evaluierung der Leistungsdaten m{\"o}glich sondern es wird auch der sichtbare Beweis erbracht, dass mit Papierwerkstoffen effiziente und hochwertige Architekturen zu realisieren sind, welche das enorme gestalterische Potential von gefalteten Wabenplatten ausnutzen.}, subject = {Tragendes Teil}, language = {de} } @phdthesis{Hollberg, author = {Hollberg, Alexander}, title = {A parametric method for building design optimization based on Life Cycle Assessment}, doi = {10.25643/bauhaus-universitaet.3800}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180928-38000}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {262}, abstract = {The building sector is responsible for a large share of human environmental impacts. Architects and planners are the key players for reducing the environmental impacts of buildings, as they define them to a large extent. Life Cycle Assessment (LCA) allows for the holistic environmental analysis of a building. However, it is currently not employed to improve the environmental performance of buildings during the design process, although the potential for optimization is greatest there. One main reason is the lack of an adequate means of applying LCA in the architectural design process. As such, the main objective of this thesis is to develop a method for environmental building design optimization that is applicable in the design process. The key concept proposed in this thesis is to combine LCA with parametric design, because it proved to have a high potential for design optimization. The research approach includes the analysis of the characteristics of LCA for buildings and the architectural design stages to identify the research gap, the establishment of a requirement catalogue, the development of a method based on a digital, parametric model, and an evaluation of the method. An analysis of currently available approaches for LCA of buildings indicates that they are either holistic but very complex or simple but not holistic. Furthermore, none of them provide the opportunity for optimization in the architectural design process, which is the main research gap. The requirements derived from the analysis have been summarized in the form of a catalogue. This catalogue can be used to evaluate both existing approaches and potential methods developed in the future. In this thesis, it served as guideline for the development of the parametric method - Parametric Life Cycle Assessment (PLCA). The unique main feature of PLCA is that embodied and operational environmental impact are calculated together. In combination with the self-contained workflow of the method, this provides the basis for holistic, time-efficient environmental design optimization. The application of PLCA to three examples indicated that all established mandatory requirements are met. In all cases, environmental impact could be significantly reduced. In comparison to conventional approaches, PLCA was shown to be much more time-efficient. PLCA allows architects to focus on their main task of designing the building, and finally makes LCA practically useful as one of several criteria for design optimization. With PLCA, the building design can be time-efficiently optimized from the beginning of the most influential early design stages, which has not been possible until now. PLCA provides a good starting point for further research. In the future, it could be extended by integrating the social and economic aspects of sustainability.}, subject = {Bauentwurf}, language = {en} } @phdthesis{Goebel, author = {G{\"o}bel, Michael}, title = {FASER-KUNSTSTOFF-METALL-GLAS-HYBRIDSYSTEME UND DEREN EINSATZ IN TRAGENDEN KONSTRUKTIONEN}, doi = {10.25643/bauhaus-universitaet.1990}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20131217-19909}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {334}, abstract = {Die Entwicklung von Hybridtechnologien f{\"u}hrt zu vielen neuartigen und effizienten Anwen-dungen. Hybridtechnologien kommen immer dann zum Einsatz, wenn die ausschließliche Nutzung einer Technologie oder eines Werkstoffs nicht zum gew{\"u}nschten Ergebnis f{\"u}hrt. Dann kann durch Kombination unterschiedlicher Werkstoffe oder Technologien ein System geschaffen werden, das in seiner Konfiguration ein Optimum an Eigenschaften darstellt. Im Bauwesen geht die Entwicklung schon seit jeher in Richtung von immer schlankeren ar-chitektonisch ansprechenden Konstruktionen. In der gegenw{\"a}rtigen Entwicklung erm{\"o}glichen hochtechnologische Kunststoffe und Faserwerkstoffe, wie z. B. Kohlenstofffasern, sehr schlanke, leichte und dennoch hochtragf{\"a}higer Konstruktionen. Der wirtschaftliche Aspekt bei der Entwicklung von Tragsystemen bzw. -strukturen erfordert dabei in fast allen F{\"a}llen eine kosteng{\"u}nstig effiziente Ausbildung und die Optimierung von Trageigenschaften und Kostenfaktoren. Daher besteht oft die Anforderung nach einem Verbundsystem, bei dem unterschiedliche Materialien in der Art miteinander kombiniert werden, dass jeder Werkstoff f{\"u}r eine bestimmte Beanspruchung angeordnet wird und sein Tragf{\"a}higkeitspotenzial optimal aussch{\"o}pft. Im Rahmen dieser Arbeit werden an konkreten Beispielen M{\"o}glichkeiten aufge-zeigt, Hochtechnologiewerkstoffe in effizienter Art und Weise zu nutzen. Der Kunststoff-Faser-Verbundwerkstoff stellt eine M{\"o}glichkeit dar, den als solches nur f{\"u}r d{\"u}nnschichtige Klebverbindungen nutzbaren Klebstoff in seinen Anwendungsm{\"o}glichkeiten zu erweitern. Die Fasern wirken dabei dem mechanischen Schwachpunkt des Klebstoffs, einer nur geringen Zugfestigkeit, effektiv entgegen. Mit faserverst{\"a}rkten Klebstoff k{\"o}nnen Anwendungen realisiert werden, bei denen der Klebstoff auch zur Zugkraft{\"u}bertragung ge-nutzt wird. Zus{\"a}tzlich bieten F{\"u}llstoffe eine M{\"o}glichkeit, die Steifigkeit des Klebstoffs zu stei-gern, was f{\"u}r viele mechanischen Beanspruchungen Vorteile mit sich bringt. Die Kombination aus einem partikelgef{\"u}llten und zus{\"a}tzlich faserverst{\"a}rkten Klebstoff f{\"u}hrt zu einem Ver-bundwerkstoff, der f{\"u}r viele unterschiedliche Anwendungen geeignet ist. Praktische Anwen-dungsm{\"o}glichkeiten finden sich in der Herstellung von Fassadenelementen, wo der faserver-st{\"a}rkte Klebstoff zur Verbindung von Aluminiumhohlprofilen verwendet wird. Weitere Anwen-dungsgebiete erstrecken sich auf die Zugkraftbewehrung von Betontragelementen, bei denen der faserverst{\"a}rkte Klebstoff die Rolle einer Zugbewehrung an der Betonoberfl{\"a}che {\"u}bernimmt. Alu-CFK-Hybridelemente erm{\"o}glichen die Herstellung sehr effizienter Tragsysteme, bei de-nen Gewichtsreduzierung der Tragstruktur und Kosteneinsparungen im Betrieb des Bauwerks gleichermaßen erm{\"o}glicht werden. Die CFK-Lamellen werden dabei in den am st{\"a}rksten l{\"a}ngskraftbeanspruchten Bereichen eines Aluminiumtragelementes angeordnet, wodurch sich die Biegetragf{\"a}higkeit des dann hybriden Tragelements signifikant erh{\"o}ht. In der Folge k{\"o}nnen Gewichtsreduzierungen, verglichen mit herk{\"o}mmlichen Aluminiumtragelementen, erzielt werden. Weiterhin k{\"o}nnen die Querschnittsaußenmaße bei Alu-CFK-Hybridelementen deutlich reduziert werden. In der Folge vereinfachen sich der Transport und die Montage dieser Art Tragwerke, was besonders bei fliegenden Bauten einen wesentlichen Vorteil dar-stellt. Der Einsatz von Glas-Kunststoff-Hybridelementen erm{\"o}glicht die Konstruktion transparenter Tragstrukturen in einer optisch einzigartigen Qualit{\"a}t. Die Konstruktion eines Glas-Kunststoff-Hybridelementes erm{\"o}glicht ein redundant wirkendes Tragverhalten, bei dem die Steifigkeit und optische Qualit{\"a}t des Glases optimal im Tragsystem genutzt werden k{\"o}nnen. Der Kunst-stoff stellt eine Art Sicherheitselement dar und {\"u}bernimmt im Falle eines Glasbruchs die Tragwirkung des Glases. Die Eigenschaft der Vorank{\"u}ndigung eines Systemversagens stellt die Grundlage f{\"u}r eine baupraktische Anwendung des Glas-Kunststoff-Hybridelementes als statisches Tragsystem dar. Durch die Redundanz des Tragverhaltens von Glas-Kunststoff-Hybridelementen ist das Versagen dieser Tragstruktur durch optische oder strukturelle An-zeichen erkennbar und eine Bemessung somit m{\"o}glich. F{\"u}r die mechanische Analyse grundlegender Zusammenh{\"a}nge in Hybridsystemen k{\"o}nnen ingenieurm{\"a}ßige, analytische und numerische Betrachtungen durchgef{\"u}hrt werden. Die in-genieurm{\"a}ßigen Betrachtungen sind sehr gut geeignet, um Absch{\"a}tzungen zu treffen, die in sp{\"a}ter durchgef{\"u}hrten experimentellen Bauteiluntersuchungen oft auch ihre Best{\"a}tigung fan-den. Bei Detailbetrachtungen, wie z. B. der Analyse eines nichtlinearen Spannungsverlaufes in mechanisch beanspruchten Klebfugen, bietet eine numerische Betrachtung mittels FEM Vorteile, da sie eine sehr detaillierte Auswertung in Bereichen mit hohen Spannungsgradien-ten erm{\"o}glicht. Durch die Anwendung der FEM ist es m{\"o}glich, Strukturen in unterschiedlichen Skalierungsbereichen zu analysieren und dabei auch Bereiche einzubeziehen, die f{\"u}r experimentelle Untersuchungen nur sehr schwer zug{\"a}nglich sind. Genaue Kenntnisse {\"u}ber das Materialverhalten der zu analysierenden Stoffe stellen dabei eine wesentliche Grundlage f{\"u}r die Erstellung qualitativ hochwertiger Rechenmodelle dar.}, subject = {Klebstoff-Faser-Verbundwerkstoff; Alu-Carbon-Hybridelement; Glas-Kunststoff-Hybridelement; ANSYS; CFK; Klebverbindungen}, language = {de} } @phdthesis{Janke, author = {Janke, Lars}, title = {Tragverhalten von Betondruckgliedern mit vorgespannter Umschn{\"u}rung aus Formged{\"a}chtnislegierungen, Stahl oder faserverst{\"a}rkten Kunststoffen}, doi = {10.25643/bauhaus-universitaet.2326}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20141023-23262}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {180}, abstract = {Druckbeanspruchte Bauteile aus Beton k{\"o}nnen mit zugfesten Umschn{\"u}rungen von außen verst{\"a}rkt werden. Mit dieser etablierten Methode konnten axiale Traglast und Duktilit{\"a}t von unzureichend bewehrten St{\"u}tzen bereits verbessert werden. Es wurde jedoch festgestellt, dass der umschn{\"u}rte Betonkern dennoch an Festigkeit verliert. Um die Wirksamkeit der Umschn{\"u}rung zu erh{\"o}hen, wird deshalb vorgeschlagen, das umschn{\"u}rende Material vorzuspannen. Dieser Vorschlag wird insbesondere von der neuen Materialgruppe der Formged{\"a}chtnislegierungen inspiriert, die thermisch vorspannbar sind. Bisher sind die Auswirkungen der Vorspannung einer Umschn{\"u}rung auf das Tragverhalten von Betondruckgliedern kaum untersucht worden. Diese L{\"u}cke wird durch systematische Versuche an Betonzylindern mit vorgespannter Umschn{\"u}rung aus Stahl und kohlenstofffaserverst{\"a}rktem Kunststoff geschlossen. Die Abbildung der Versuchsergebnisse durch geeignete Modelle erm{\"o}glicht auch Aussagen zum Verhalten von Betondruckgliedern mit Umschn{\"u}rungen aus anderen Materialien, beispielsweise Formged{\"a}chtnislegierungen. Um diese in den Berechnungen zu simulieren, wird eine f{\"u}r das Bauwesen infrage kommende eisenbasierte Legierung in separaten axialen Versuchen charakterisiert und thermisch vorgespannt. Die in der vorliegenden Arbeit entwickelten neuen Modelle orientieren sich im Wesentlichen an zwei Zielen: dem Abbilden des mehraxialen Spannungs-Dehnungs-Verhaltens des vorgespannt umschn{\"u}rten Betons und dem Berechnen der Restfestigkeit des Betons. Die durchgef{\"u}hrten Versuche und Parameterstudien auf Basis der Modelle zeigen: Die Vorspannung der Umschn{\"u}rung beeinflusst vor allem die Restfestigkeit des Betons wesentlich. Die gewonnenen Erkenntnisse und neuen Methoden k{\"o}nnen eingesetzt werden, um das Tragverhalten von Betondruckgliedern mit Umschn{\"u}rungen aus Stahl, faserverst{\"a}rktem Kunststoff oder Formged{\"a}chtnislegierungen zu bewerten.}, subject = {Beton}, language = {de} } @phdthesis{Wellnitz, author = {Wellnitz, Felix}, title = {BAUKLIMATISCHE ERT{\"U}CHTIGUNG UND NACHHALTIGE INSTANDSETZUNG DENKMALGESCH{\"U}TZTER VERWALTUNGSBAUTEN DER 1950er JAHRE AM BEISPIEL DER EHEMALIGEN BAYERISCHEN LANDESVERTRETUNG VON SEP RUF IN BONN}, doi = {10.25643/bauhaus-universitaet.2303}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20140919-23031}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {172}, abstract = {Viele Baudenkmale sind dem Konflikt aus baulichem Instandsetzungsbedarf f{\"u}r eine zeitgem{\"a}ße Nutzung und einer sich m{\"o}glicherweise daraus ergebenden Gef{\"a}hrdung der Denkmalsubstanz ausgesetzt. Gr{\"u}nde sind steigende Energiekosten f{\"u}r den Geb{\"a}udebetrieb, zeitgem{\"a}ße Anforderungen an Behaglichkeit und Arbeitsschutz, sowie die Vermeidung von Sch{\"a}den an der Substanz aufgrund baulicher M{\"a}ngel des konstruktiven W{\"a}rme- und Feuchteschutzes. Gleichzeitig gilt f{\"u}r viele Bauten aber auch die Notwendigkeit regelm{\"a}ßiger Nutzung und Bewirtschaftung, um den Erhalt {\"u}berhaupt zu sichern. Die energetische Ert{\"u}chtigung von Baudenkmalen scheitert in diesem Spannungsfeld oft am unl{\"o}sbaren Konflikt zwischen dem Erhalt der bauzeitlichen Substanz auf der einen und der notwendigen energetischen Optimierung der Geb{\"a}udeh{\"u}lle auf der anderen Seite. Zielsetzung dieser Fallstudie ist die beispielhafte Entwicklung einer bauklimatischen und denkmalgerechten Ert{\"u}chtigungsstrategie am Beispiel eines Verwaltungsgeb{\"a}udes der Nachkriegsmoderne als Beitrag zur L{\"o}sung dieses Konfliktes.}, subject = {Denkmalpflege}, language = {de} }