@article{Dressel, author = {Dressel, Dennys}, title = {Reaktivit{\"a}t von H{\"u}ttensand : Thermodynamische Grundlagen und Anwendung}, doi = {10.25643/bauhaus-universitaet.2677}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160829-26778}, pages = {178}, abstract = {Die thermodynamischen Grundlagen der Hydratation von H{\"u}ttensand als Hauptbestandteil von Zementen werden erforscht. Hierbei werden thermodynamische Bildungs- und Reaktionsdaten experimentell bestimmt und berechnet. Dar{\"u}ber hinaus wird der Prozess der Feststoffaufl{\"o}sung von H{\"u}ttensand in w{\"a}ssrigen L{\"o}sungen untersucht. L{\"o}sungs- und F{\"a}llungsprozesse werden unter verschiedenen Konditionen gemessen, ausgewertet und diskutiert. Die Ergebnisse werden im weiteren Verlauf zur Bestimmung der Hydratationsgrades in Pasten sowie zum besseren Verst{\"a}ndnis in der Wechselwirkung zwischen H{\"u}ttensanden und Mahlhilfsstoffen genutzt und angewandt.}, subject = {H{\"u}ttensand}, language = {de} } @phdthesis{Wieteska, author = {Wieteska, Marcin}, title = {Untersuchungen zur Optimierung des Feuerwiderstandsverhaltens von Gipsplatten}, publisher = {Marcin Wieteska}, address = {Warszawa}, isbn = {978-83-936473-0-9}, doi = {10.25643/bauhaus-universitaet.1782}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20121207-17829}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {176}, abstract = {Die Qualit{\"a}t von Beplankungselementen wirkt sich deutlich auf den Feuerwiderstand von Metallst{\"a}nder-Wandkonstruktionen aus. Daher wurde im Rahmen dieser Arbeit der Einfluss von Zus{\"a}tzen in Gipsplatten bez{\"u}glich einer m{\"o}glichen Verbesserung dieser Eigenschaft untersucht. Zu diesem Zweck wurden spezielle, den jeweiligen Untersuchungsbedingungen angepasste Probek{\"o}rper unter Verwendung verschiedenster Zus{\"a}tze gefertigt. Die Beurteilung deren Auswirkungen erfolgte insbesondere mittels nachfolgender f{\"u}nf Kriterien: 1) dem Zeitpunkt der Temperaturerh{\"o}hung nach der Probek{\"o}rperentw{\"a}sserung, 2) dem Maximalwert der Plattenr{\"u}ckseitentemperatur, 3) der Gr{\"o}ße und der Anzahl der Risse, 4) der Plattenstabilit{\"a}t nach der W{\"a}rmebeanspruchung, 5) der Verk{\"u}rzung von prismatischen Probek{\"o}rpern. Besonders wichtig war hierbei die Charakterisierung der Auswirkungen einer simulierten Brandbeanspruchung von 970 °C {\"u}ber 90 Minuten auf Labor-Gipsplatten. Dabei wurde die Temperatur{\"a}nderung auf der Plattenr{\"u}ckseite {\"u}ber den gesamten Pr{\"u}fzeitraum kontinuierlich erfasst. Die Bewertung des Zusammenhalts der Platten nach der thermischen Beanspruchung erfolgte erstmals quantitativ {\"u}ber Anzahl und Gr{\"o}ße der an den Proben entstandenen Risse. Urs{\"a}chlich f{\"u}r die Rissbildung ist die Verringerung des Probek{\"o}rpervolumens infolge des ausgetriebenen Kristallwassers. Da dieser Parameter im Plattenversuch nicht bestimmt werden kann, wurde erg{\"a}nzend das L{\"a}ngen{\"a}nderungsverhalten von Prismen im Ergebnis einer 90min{\"u}tigen Temperung bei 1000 °C im Muffelofen ermittelt. Besonders vorteilhaft hat sich die Zugabe von 80 g/m2 Glasfasern und 7,75 \% Kalksteinmehl auf das Verhalten von Gipsplatten bei Brandbeanspruchung ausgewirkt. Diese Verbesserung ist insbesondere auf h{\"o}here Stabilit{\"a}t und geringere Schrumpfung der Gipsplatte zur{\"u}ckzuf{\"u}hren. Basierend auf den im Labormaßstab erhaltenen Ergebnissen wurden Rezepturvorschl{\"a}ge zur Verbesserung des Feuerwiderstandsverhaltens von Gipsplatten unter Praxisbedingungen entwickelt. Die Herstellung der erforderlichen großformatigen Platten erfolgte auf der Bandstraße der Knauf Gips KG. Diese Platten wurden als Wandkonstruktion mit zweilagiger Beplankung einer großtechnischen Pr{\"u}fung erfolgreich unterzogen. Eine geringere Durchbiegung der Wandkonstruktion, eine verminderte Volumenreduzierung der Platten sowie eine erh{\"o}hte Plattenstabilit{\"a}t belegen die verbesserten Eigenschaften dieser modifizierten Feuerschutzplatte. Weitere durchgef{\"u}hrte Untersuchungen ergaben, dass es unerheblich ist, ob die Platten auf Basis von Natur- oder REA-Gips bzw. mit hohem oder niedrigem Fl{\"a}chengewicht gefertigt wurden. Das eindeutig beste Ergebnis mit einer Feuerwiderstandsdauer von 118 Minuten hat eine Wandkonstruktion aus Feuerschutzplatten auf Basis eines Stuckgipses aus 100 \% REA-Gips mit einem Anteil von 83,9 g/m2 Glasfasern und 1 \% Vermiculit und einem Fl{\"a}chengewicht von 10,77 kg/m2, bei einer Plattenst{\"a}rke von 12,5 mm. Die als Ziel vorgebende Feuerwiderstandsdauer von 120 Minuten bei zweilagiger Beplankung ohne D{\"a}mmstoff k{\"o}nnte k{\"u}nftig erreicht werden, wenn es gelingt, die Volumenreduzierung noch besser zu kompensieren und die Plattenstabilit{\"a}t zu steigern. Eine M{\"o}glichkeit hierzu ist die Substitution der beidseitigen Kartonlagen durch eine Glasfaser-Vliesummantelung. Die Wandkonstruktion W112 ohne D{\"a}mmstoff erreicht dabei eine Feuerwiderstandsdauer von weit {\"u}ber 120 Minuten, wobei der Gipskern mit Glasfasern armiert ist.}, subject = {0947}, language = {de} } @phdthesis{Reformat, author = {Reformat, Martin}, title = {Zementmahlung - Untersuchungen zum Zusammenhang von Mahlaggregat und Materialeigenschaften}, isbn = {978-3-00-067121-0}, doi = {10.25643/bauhaus-universitaet.4279}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201102-42794}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {224}, abstract = {Die Mahlung als Zerkleinerungsprozess stellt seit den Anf{\"a}ngen der Menschheit eine der wichtigsten Verarbeitungsformen von Materialien aller Art dar - von der Getreidemahlung, {\"u}ber das Aufschließen von Heilkr{\"a}utern in M{\"o}rsern bis hin zur Herstellung von Tonern f{\"u}r Drucker und Kopierer. Besonders die Zementmahlung ist in modernen Gesellschaften sowohl ein wirtschaftlicher als auch ein {\"o}kologischer Faktor. Mehr als zwei Drittel der elektrischen Energie der Zementproduktion werden f{\"u}r Rohmehl- und Klinker- bzw. Kompositmaterialmahlung verbraucht. Dies ist nur ein Grund, warum der Mahlprozess zunehmend in den Fokus vieler Forschungs- und Entwicklungsvorhaben r{\"u}ckt. Die Komplexit{\"a}t der Zementmahlung steigt im zunehmenden Maße an. Die simple „Mahlung auf Zementfeinheit" ist seit langem obsolet. Zemente werden maßgeschneidert, mit verschiedensten Kombinationsprodukten, getrennt oder gemeinsam, in unterschiedlichen Mahlaggregaten oder mit ganz neuen Ans{\"a}tzen gefertigt. Dar{\"u}ber hinaus gewinnt auch der Sektor des Baustoffrecyclings, mit allen damit verbundenen Herausforderungen, immer mehr an Bedeutung. Bei der Fragestellung, wie der Mahlprozess einerseits leistungsf{\"a}hige Produkte erzeugen kann und andererseits die zunehmenden Anforderungen an Nachhaltigkeit erf{\"u}llt, steht das Mahlaggregat im Mittelpunkt der Betrachtungen. Dementsprechend gliedert sich, neben einer eingehenden Literaturrecherche zum Wissensstand, die vorliegende Arbeit in zwei {\"u}bergeordnete Teile: Im ersten Teil werden Untersuchungen an konventionellen Mahlaggregaten mit in der Zementindustrie verwendeten Kernprodukten wie Portlandzementklinker, Kalkstein, Flugasche und H{\"u}ttensand angestellt. Um eine m{\"o}glichst effektive Mahlung von Zement und Kompositmaterialien zu gew{\"a}hrleisten, ist es wichtig, die Auswirkung von M{\"u}hlenparametern zu kennen. Hierf{\"u}r wurde eine umfangreiche Versuchsmatrix aufgestellt und abgearbeitet. Das Spektrum der Analysemethoden war ebenfalls umfangreich und wurde sowohl auf die gemahlenen Materialien als auch auf die daraus hergestellten Zemente und Betone angewendet. Es konnte gezeigt werden, dass vor allem die Unterscheidung zwischen Mahlk{\"o}rperm{\"u}hlen und mahlk{\"o}rperlosen M{\"u}hlen entscheidenden Einfluss auf die Granulometrie und somit auch auf die Zementperformance hat. Besonders stark wurden die Verarbeitungseigenschaften, insbesondere der Wasseranspruch und damit auch das Porengef{\"u}ge und schließlich Druckfestigkeiten sowie Dauerhaftigkeitseigenschaften der aus diesen Zementen hergestellten Betone, beeinflusst. Bei Untersuchungen zur gemeinsamen Mahlung von Kalkstein und Klinker f{\"u}hrten ung{\"u}nstige Anreicherungseffekte des gut mahlbaren Kalksteins sowie tonigen Nebenbestandteilen zu einer schlechteren Performance in allen Zementpr{\"u}fungen. Der zweite Teil widmet sich der Hochenergiemahlung. Die dahinterstehende Technik wird seit Jahrzehnten in anderen Wirtschaftsbranchen, wie der Pharmazie, Biologie oder auch Lebensmittelindustrie angewendet und ist seit einiger Zeit auch in der Zementforschung anzutreffen. Beispielhaft seien hier die Planeten- und R{\"u}hrwerkskugelm{\"u}hle als Vertreter genannt. Neben grundlegenden Untersuchungen an Zementklinker und konventionellen Kompositmaterialien wie H{\"u}ttensand und Kalkstein wurde auch die Haupt-Zementklinkerphase Alit untersucht. Die Hochenergiemahlung von konventionellen Kompositmaterialien generierte zus{\"a}tzliche Reaktivit{\"a}t bei gleicher Granulometrie gegen{\"u}ber der herk{\"o}mmlichen Mahlung. Dies wurde vor allem bei per se reaktivem Zementklinker als auch bei latent-hydraulischem H{\"u}ttensand beobachtet. Gemahlene Flugaschen konnten nur im geringen Maße weiter aktiviert werden. Der generelle Einfluss von Oberfl{\"a}chenvergr{\"o}ßerung, Strukturdefekten und Relaxationseffekten eines Mahlproduktes wurden eingehend untersucht und gewichtet. Die Ergebnisse bei der Hochenergiemahlung von Alit zeigten, dass die durch Mahlung eingebrachten Strukturdefekte eine Erh{\"o}hung der Reaktivit{\"a}t zur Folge haben. Hierbei konnte festgestellt werden, das maßgeblich Oberfl{\"a}chendefekte, strukturelle (Volumen-)defekte und als Konterpart Selbstheilungseffekte die reaktivit{\"a}tsbestimmenden Faktoren sind. Weiterhin wurden Versuche zur Mahlung von Altbetonbrechsand durchgef{\"u}hrt. Im Speziellen wurde untersucht, inwieweit eine R{\"u}ckf{\"u}hrung von Altbetonbrechsand, als unverwertbarer Teil des Betonbruchs, in Form eines Zement-Kompositmaterials in den Baustoffkreislauf m{\"o}glich ist. Die hierf{\"u}r verwendete Mahltechnik umfasst sowohl konventionelle M{\"u}hlen als auch Hochenergiem{\"u}hlen. Es wurden Kompositzemente mit variiertem Recyclingmaterialanteil hergestellt und auf grundlegende Eigenschaften untersucht. Zur Bewertung der Produktqualit{\"a}t wurde der sogenannte „Aktivierungskoeffizient" eingef{\"u}hrt. Es stellte sich heraus, dass die R{\"u}ckf{\"u}hrung von Altbetonbrechsand als potentielles Kompositmaterial wesentlich vom Anteil des Zementsteins abh{\"a}ngt. So konnte beispielsweise reiner Zementstein als aufgemahlenes Kompositmaterial eine bessere Performance gegen{\"u}ber dem mit Gesteinsk{\"o}rnung beaufschlagtem Altbetonbrechsand ausweisen. Bezogen auf die gemessenen Hydratationsw{\"a}rmen und Druckfestigkeiten nahm der Aktivierungskoeffzient mit fallendem Abstraktionsgrad ab. Ebenfalls sank der Aktivierungskoeffizient mit steigendem Substitutionsgrad. Als Vergleich wurden dieselben Materialien in konventionellen M{\"u}hlen aufbereitet. Die hier erzielten Ergebnisse k{\"o}nnen teilweise der Hochenergiemahlung als gleichwertig beurteilt werden. Folglich ist bei der Aktivierung von Recyclingmaterialien weniger die Mahltechnik als der Anteil an aktivierbarem Zementstein ausschlaggebend.}, subject = {Zement}, language = {de} }