@inproceedings{DeebZabel, author = {Deeb, Maher and Zabel, Volkmar}, title = {THE APPLICATION OF POD CURVES TO DAMAGE DETECTION BASED ON PARTIAL MODELS- A NUMERICAL AND EXPERIMENTAL STUDY}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2761}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27615}, pages = {18}, abstract = {Non-destructive techniques for damage detection became the focus of engineering interests in the last few years. However, applying these techniques to large complex structures like civil engineering buildings still has some limitations since these types of structures are unique and the methodologies often need a large number of specimens for reliable results. For this reason, cost and time can greatly influence the final results. Model Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of damage identification techniques, especially with advances in computer capacity and modeling tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model in advance. This condition is opening the door for model assessment and model quality problems. In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability Of damage Detection (POD). A simply supported beam, that can be structurally modified and tested under laboratory conditions, is taken as an example. The study includes both experimental and numerical investigations, the application of vibration-based damage detection approaches and a comparison of the results obtained based on tests and simulations. Eventually, a proposal for a methodology to assess the reliability and the robustness of the models is given.}, subject = {Angewandte Informatik}, language = {en} } @article{ZabelBrehm, author = {Zabel, Volkmar and Brehm, Maik}, title = {Das dynamische Verhalten von Eisenbahnbr{\"u}cken mit kurzer Spannweite - numerische und experimentelle Untersuchungen}, series = {Bauingenieur, D-A-CH-Mitteilungsblatt}, journal = {Bauingenieur, D-A-CH-Mitteilungsblatt}, abstract = {Das dynamische Verhalten von Eisenbahnbr{\"u}cken mit kurzer Spannweite - numerische und experimentelle Untersuchungen}, subject = {Angewandte Mathematik}, language = {de} } @article{LuuMartinezRodrigoZabeletal., author = {Luu, M. and Martinez-Rodrigo, M.D. and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {2421 -- 2442}, abstract = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, subject = {Angewandte Mathematik}, language = {en} } @article{AbdelnourZabel, author = {Abdelnour, Mena and Zabel, Volkmar}, title = {Modal identification of structures with a dynamic behaviour characterised by global and local modes at close frequencies}, series = {Acta Mechanica}, volume = {2023}, journal = {Acta Mechanica}, publisher = {Springer}, address = {Wien}, doi = {10.1007/s00707-023-03598-z}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230525-63822}, pages = {1 -- 21}, abstract = {Identification of modal parameters of a space frame structure is a complex assignment due to a large number of degrees of freedom, close natural frequencies, and different vibrating mechanisms. Research has been carried out on the modal identification of rather simple truss structures. So far, less attention has been given to complex three-dimensional truss structures. This work develops a vibration-based methodology for determining modal information of three-dimensional space truss structures. The method uses a relatively complex space truss structure for its verification. Numerical modelling of the system gives modal information about the expected vibration behaviour. The identification process involves closely spaced modes that are characterised by local and global vibration mechanisms. To distinguish between local and global vibrations of the system, modal strain energies are used as an indicator. The experimental validation, which incorporated a modal analysis employing the stochastic subspace identification method, has confirmed that considering relatively high model orders is required to identify specific mode shapes. Especially in the case of the determination of local deformation modes of space truss members, higher model orders have to be taken into account than in the modal identification of most other types of structures.}, subject = {Fachwerkbau}, language = {en} }