@article{AreiasRabczukQueirosdeMeloetal., author = {Areias, Pedro and Rabczuk, Timon and Queiros de Melo, F. J. M. and Cesar de Sa, J.M.}, title = {Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems}, series = {Computational Mechanics}, journal = {Computational Mechanics}, pages = {57 -- 72}, abstract = {Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniTalebiZiaeiRadetal., author = {Silani, Mohammad and Talebi, Hossein and Ziaei-Rad, S. and Hamouda, A.M.S. and Zi, Goangseup and Rabczuk, Timon}, title = {A three dimensional Extended Arlequin Method for Dynamic Fracture}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {425 -- 431}, abstract = {A three dimensional Extended Arlequin Method for Dynamic Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiRafieeZhuangetal., author = {Ghasemi, Hamid and Rafiee, Roham and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {295 -- 305}, abstract = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhuangMuthuetal., author = {Zhang, Yancheng and Zhuang, Xiaoying and Muthu, Jacob and Mabrouki, Tarek and Fontaine, Micha{\"e}l and Gong, Yadong and Rabczuk, Timon}, title = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {27 -- 33}, abstract = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhMuthuZhuangetal., author = {Nguyen-Thanh, Nhon and Muthu, Jacob and Zhuang, Xiaoying and Rabczuk, Timon}, title = {An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics}, series = {Computational Mechanics}, journal = {Computational Mechanics}, pages = {369 -- 385}, abstract = {An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoLuRabczuk, author = {Zhao, Jun-Hua and Lu, Lixin and Rabczuk, Timon}, title = {Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines}, series = {The Journal of Chemical Physics}, journal = {The Journal of Chemical Physics}, doi = {10.1063/1.4878115}, abstract = {Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {463 -- 473}, abstract = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, subject = {Angewandte Mathematik}, language = {en} } @article{JamshidianRabczuk, author = {Jamshidian, M. and Rabczuk, Timon}, title = {Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale}, series = {Journal of Computational Physics}, journal = {Journal of Computational Physics}, pages = {23 -- 35}, abstract = {Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale}, subject = {Angewandte Mathematik}, language = {en} } @article{ShiraziMohebbiAzadiKakavandetal., author = {Shirazi, A. H. N. and Mohebbi, Farzad and Azadi Kakavand, M. R. and He, B. and Rabczuk, Timon}, title = {Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation}, series = {JOURNAL OF NANOMATERIALS}, journal = {JOURNAL OF NANOMATERIALS}, doi = {10.1155/2016/2131946}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170411-31141}, abstract = {Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman's well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.}, subject = {Batterie}, language = {en} }