@article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Stochastic simulation of cracking in concrete structures using multi-parameter random fields}, series = {International Journal of Reliability and Safety}, journal = {International Journal of Reliability and Safety}, pages = {168 -- 187}, abstract = {Stochastic simulation of cracking in concrete structures using multi-parameter random fields}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Most2005, author = {Most, Thomas}, title = {Stochastic crack growth simulation in reinforced concrete structures by means of coupled finite element and meshless methods}, doi = {10.25643/bauhaus-universitaet.725}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20051219-7623}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2005}, abstract = {The complex failure process of concrete structures can not be described in detail by standard engineering design formulas. The numerical analysis of crack development in concrete is essential for several problems. In the last decades a large number of research groups have dealt with this topic and several models and algorithms were developed. However, most of these methods show some difficulties and are limited to special cases. The goal of this study was to develop an automatic algorithm for the efficient simulation of multiple cracking in plain and reinforced concrete structures of medium size. For this purpose meshless methods were used to describe the growth of crack surfaces. Two meshless interpolation schemes were improved for a simple application. The cracking process of concrete has been modeled using a stable criterion for crack growth in combination with an improved cohesive crack model which can represent the failure process under combined crack opening and crack sliding very well. This crack growth algorithm was extended in order to represent the fluctuations of the concrete properties by enlarging the single-parameter random field concept for multiple correlated material parameters.}, subject = {Gitterfreie Methode}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Probabilistic analysis of concrete cracking using neural networks and random fields}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {219 -- 229}, abstract = {Probabilistic analysis of concrete cracking using neural networks and random fields}, subject = {Angewandte Mathematik}, language = {en} } @article{KirichukMostBucher, author = {Kirichuk, A. and Most, Thomas and Bucher, Christian}, title = {Numerical nonlinear analysis of kinematically excited shells}, series = {International Journal for Computational Civil and Structural Engineering}, journal = {International Journal for Computational Civil and Structural Engineering}, pages = {61 -- 74}, abstract = {Numerical nonlinear analysis of kinematically excited shells}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares}, series = {Engineering Analysis with Boundary Elements}, journal = {Engineering Analysis with Boundary Elements}, pages = {461 -- 470}, abstract = {New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{Most, author = {Most, Thomas}, title = {ESTIMATING UNCERTAINTIES FROM INACCURATE MEASUREMENT DATA USING MAXIMUM ENTROPY DISTRIBUTIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2873}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28732}, pages = {14}, abstract = {Modern engineering design often considers uncertainties in geometrical and material parameters and in the loading conditions. Based on initial assumptions on the stochastic properties as mean values, standard deviations and the distribution functions of these uncertain parameters a probabilistic analysis is carried out. In many application fields probabilities of the exceedance of failure criteria are computed. The out-coming failure probability is strongly dependent on the initial assumptions on the random variable properties. Measurements are always more or less inaccurate data due to varying environmental conditions during the measurement procedure. Furthermore the estimation of stochastic properties from a limited number of realisation also causes uncertainties in these quantities. Thus the assumption of exactly known stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic measures in a design process. In this paper we assume the stochastic properties of a random variable as uncertain quantities caused by so-called epistemic uncertainties. Instead of predefined distribution types we use the maximum entropy distribution which enables the description of a wide range of distribution functions based on the first four stochastic moments. These moments are taken again as random variables to model the epistemic scatter in the stochastic assumptions. The main point of this paper is the discussion on the estimation of these uncertain stochastic properties based on inaccurate measurements. We investigate the bootstrap algorithm for its applicability to quantify the uncertainties in the stochastic properties considering imprecise measurement data. Based on the obtained estimates we apply standard stochastic analysis on a simple example to demonstrate the difference and the necessity of the proposed approach.}, subject = {Angewandte Informatik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization}, series = {International Journal for Numerical and Analytical Methods in Geomechanics}, journal = {International Journal for Numerical and Analytical Methods in Geomechanics}, pages = {285 -- 305}, abstract = {Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucherSchorling, author = {Most, Thomas and Bucher, Christian and Schorling, York}, title = {Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {381 -- 400}, abstract = {Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading}, subject = {Angewandte Mathematik}, language = {en} } @article{MostIshiiGengetal., author = {Most, Thomas and Ishii, H. and Geng, X. and Bolzern, P. and Colaneri, P. and De Nicolao, G.}, title = {Discussion on Almost sure stability of stochastic linear systems with ergodic parameters}, series = {European Journal of Control}, journal = {European Journal of Control}, pages = {124 -- 130}, abstract = {Discussion on Almost sure stability of stochastic linear systems with ergodic parameters}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{MostBucher2003, author = {Most, Thomas and Bucher, Christian}, title = {Application of the "fictious crack model" to meshless crack growth simulations}, doi = {10.25643/bauhaus-universitaet.335}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3359}, year = {2003}, abstract = {In this paper a meshless component is presented, which internally uses the common meshless interpolation technique >Moving Least Squares<. In contrast to usual meshless integration schemes like the cell quadrature and the nodal integration in this study integration zones with triangular geometry spanned by three nodes are used for 2D analysis. The boundary of the structure is defined by boundary nodes, which are similar to finite element nodes. By using the neighborhood relations of the integration zones an efficient search algorithm to detected the nodes in the influence of the integration points was developed. The components are directly coupled with finite elements by using a penalty method. An widely accepted model to describe the fracture behavior of concrete is the >Fictitious Crack Model< which is applied in this study, which differentiates between micro cracks and macro cracks, with and without force transmission over the crack surface, respectively. In this study the crack surface is discretized by node pairs in form of a polygon, which is part of the boundary. To apply the >Fictitious Crack Model< finite interface elements are included between the crack surface nodes. The determination of the maximum principal strain at the crack tip is done by introducing an influence area around the singularity. On a practical example it is shown that the included elements improve the model by the transmission of the surface forces during monotonic loading and by the representation of the contact forces of closed cracks during reverse loading.}, subject = {Bruchmechanik}, language = {en} }