@techreport{AmanoBimberGrundhoefer2010, author = {Amano, Toshiyuki and Bimber, Oliver and Grundh{\"o}fer, Anselm}, title = {Appearance Enhancement for Visually Impaired with Projector Camera Feedback}, doi = {10.25643/bauhaus-universitaet.1411}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100106-14974}, year = {2010}, abstract = {Visually impaired is a common problem for human life in the world wide. The projector-based AR technique has ability to change appearance of real object, and it can help to improve visibility for visually impaired. We propose a new framework for the appearance enhancement with the projector camera system that employed model predictive controller. This framework enables arbitrary image processing such as photo-retouch software in the real world and it helps to improve visibility for visually impaired. In this article, we show the appearance enhancement result of Peli's method and Wolffshon's method for the low vision, Jefferson's method for color vision deficiencies. Through experiment results, the potential of our method to enhance the appearance for visually impaired was confirmed as same as appearance enhancement for the digital image and television viewing.}, subject = {Maschinelles Sehen}, language = {en} } @techreport{GrundhoeferBimber2008, author = {Grundh{\"o}fer, Anselm and Bimber, Oliver}, title = {Dynamic Bluescreens}, doi = {10.25643/bauhaus-universitaet.1233}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080226-13016}, year = {2008}, abstract = {Blue screens and chroma keying technology are essential for digital video composition. Professional studios apply tracking technology to record the camera path for perspective augmentations of the original video footage. Although this technology is well established, it does not offer a great deal of flexibility. For shootings at non-studio sets, physical blue screens might have to be installed, or parts have to be recorded in a studio separately. We present a simple and flexible way of projecting corrected keying colors onto arbitrary diffuse surfaces using synchronized projectors and radiometric compensation. Thereby, the reflectance of the underlying real surface is neutralized. A temporal multiplexing between projection and flash illumination allows capturing the fully lit scene, while still being able to key the foreground objects. In addition, we embed spatial codes into the projected key image to enable the tracking of the camera. Furthermore, the reconstruction of the scene geometry is implicitly supported.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @article{GrundhoeferSeegerHaentschetal.2007, author = {Grundh{\"o}fer, Anselm and Seeger, Manja and H{\"a}ntsch, Ferry and Bimber, Oliver}, title = {Coded Projection and Illumination for Television Studios}, organization = {Bimber, Fak. M, BUW}, doi = {10.25643/bauhaus-universitaet.800}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8005}, year = {2007}, abstract = {We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker technique}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} } @article{BimberGrundhoeferZollmannetal.2006, author = {Bimber, Oliver and Grundh{\"o}fer, Anselm and Zollmann, Stefanie and Kolster, Daniel}, title = {Digital Illumination for Augmented Studios}, doi = {10.25643/bauhaus-universitaet.857}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8576}, year = {2006}, abstract = {Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination - opening new possibilities for TV studios.}, subject = {Studiotechnik}, language = {en} } @unpublished{GrundhoeferBimber2006, author = {Grundh{\"o}fer, Anselm and Bimber, Oliver}, title = {Real-Time Adaptive Radiometric Compensation}, doi = {10.25643/bauhaus-universitaet.784}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7848}, year = {2006}, abstract = {Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. With the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. They will lead to clipping errors and to visible artifacts on the surface. In this article, we present a novel algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time.}, subject = {Maschinelles Sehen}, language = {en} } @phdthesis{Grundhoefer2010, author = {Grundh{\"o}fer, Anselm}, title = {Synchronized Illumination Modulation for Digital Video Compositing}, doi = {10.25643/bauhaus-universitaet.1440}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20101210-15278}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2010}, abstract = {Informationsaustausch ist eines der Grundbed{\"u}rfnisse der Menschen. W{\"a}hrend fr{\"u}her dazu Wandmalereien,Handschrift, Buchdruck und Malerei eingesetzt wurden, begann man sp{\"a}ter, Bildfolgen zu erstellen, die als sogenanntes "Daumenkino" den Eindruck einer Animation vermitteln. Diese wurden schnell durch den Einsatz rotierender Bildscheiben, auf denen mit Hilfe von Schlitzblenden, Spiegeln oder Optiken eine Animation sichtbar wurde, automatisiert - mit sogenannten Phenakistiskopen,Zoetropen oder Praxinoskopen. Mit der Erfindung der Fotografie begannen in der zweiten H{\"a}lfte des 19. Jahrhunderts die ersten Wissenschaftler wie Eadweard Muybridge, Etienne-Jules Marey und Ottomar Ansch{\"u}tz, Serienbildaufnahmen zu erstellen und diese dann in schneller Abfolge, als Film, abzuspielen. Mit dem Beginn der Filmproduktion wurden auch die ersten Versuche unternommen, mit Hilfe dieser neuen Technik spezielle visuelle Effekte zu generieren, um damit die Immersion der Bewegtbildproduktionen weiter zu erh{\"o}hen. W{\"a}hrend diese Effekte in der analogen Phase der Filmproduktion bis in die achtziger Jahre des 20.Jahrhunderts recht beschr{\"a}nkt und sehr aufwendig mit einem enormen manuellen Arbeitsaufwand erzeugt werden mussten, gewannen sie mit der sich rapide beschleunigenden Entwicklung der Halbleitertechnologie und der daraus resultierenden vereinfachten digitalen Bearbeitung immer mehr an Bedeutung. Die enormen M{\"o}glichkeiten, die mit der verlustlosen Nachbearbeitung in Kombination mit fotorealistischen, dreidimensionalen Renderings entstanden, f{\"u}hrten dazu, dass nahezu alle heute produzierten Filme eine Vielfalt an digitalen Videokompositionseffekten beinhalten. ...}, subject = {Lumineszenzdiode}, language = {en} } @techreport{ExnerBrunsKurzetal.2009, author = {Exner, David and Bruns, Erich and Kurz, Daniel and Grundh{\"o}fer, Anselm and Bimber, Oliver}, title = {Fast and Reliable CAMShift Tracking}, organization = {JP AUgmented Reality, Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.1410}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20091217-14962}, year = {2009}, abstract = {CAMShift is a well-established and fundamental algorithm for kernel-based visual object tracking. While it performs well with objects that have a simple and constant appearance, it is not robust in more complex cases. As it solely relies on back projected probabilities it can fail in cases when the object's appearance changes (e.g. due to object or camera movement, or due to lighting changes), when similarly colored objects have to be re-detected or when they cross their trajectories. We propose extensions to CAMShift that address and resolve all of these problems. They allow the accumulation of multiple histograms to model more complex object appearance and the continuous monitoring of object identi- ties to handle ambiguous cases of partial or full occlusion. Most steps of our method are carried out on the GPU for achieving real-time tracking of multiple targets simultaneously. We explain an ecient GPU implementations of histogram generation, probability back projection, im- age moments computations, and histogram intersection. All of these techniques make full use of a GPU's high parallelization.}, subject = {Bildverarbeitung}, language = {en} } @techreport{GrundhoeferSeegerHaentschetal.2007, author = {Grundh{\"o}fer, Anselm and Seeger, Manja and H{\"a}ntsch, Ferry and Bimber, Oliver}, title = {Dynamic Adaptation of Projected Imperceptible Codes}, doi = {10.25643/bauhaus-universitaet.816}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-8168}, year = {2007}, abstract = {In this paper we present a novel adaptive imperceptible pattern projection technique that considers parameters of human visual perception. A coded image that is invisible for human observers is temporally integrated into the projected image, but can be reconstructed by a synchronized camera. The embedded code is dynamically adjusted on the fly to guarantee its non-perceivability and to adapt it to the current camera pose. Linked with real-time flash keying, for instance, this enables in-shot optical tracking using a dynamic multi-resolution marker technique. A sample prototype is realized that demonstrates the application of our method in the context of augmentations in television studios.}, subject = {Association for Computing Machinery / Special Interest Group on Graphics}, language = {en} }