@article{KleinerRoesslerVogtetal., author = {Kleiner, Florian and R{\"o}ßler, Christiane and Vogt, Franziska and Osburg, Andrea and Ludwig, Horst-Michael}, title = {Reconstruction of calcium silicate hydrates using multiple 2D and 3D imaging techniques: Light microscopy, μ-CT, SEM, FIB-nT combined with EDX}, series = {Journal of Microscopy}, volume = {2021}, journal = {Journal of Microscopy}, publisher = {John Wiley \& Sons Ltd}, address = {Oxford}, doi = {10.1111/jmi.13081}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45458}, pages = {1 -- 6}, abstract = {This study demonstrates the application and combination of multiple imaging techniques [light microscopy, micro-X-ray computer tomography (μ-CT), scanning electron microscopy (SEM) and focussed ion beam - nano-tomography (FIB-nT)] to the analysis of the microstructure of hydrated alite across multiple scales. However, by comparing findings with mercury intrusion porosimetry (MIP), it becomes obvious that the imaged 3D volumes and 2D images do not sufficiently overlap at certain scales to allow a continuous quantification of the pore size distribution (PSD). This can be overcome by improving the resolution and increasing the measured volume. Furthermore, results show that the fibrous morphology of calcium-silicate-hydrates (C-S-H) phases is preserved during FIB-nT. This is a requirement for characterisation of nano-scale porosity. Finally, it was proven that the combination of FIB-nT with energy-dispersive X-ray spectroscopy (EDX) data facilitates the phase segmentation of a 11 × 11 × 7.7 μm3 volume of hydrated alite.}, subject = {Zementklinker}, language = {en} }