@article{KazakevitchVolkova1997,
author = {Kazakevitch, M. I. and Volkova, Viktorija},
title = {The exact Solution of the free pre-stressed Bar-Oscillations},
doi = {10.25643/bauhaus-universitaet.535},
url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5356},
year = {1997},
abstract = {In this paper the results of the investigations of the free oscillations of the pre-stressed flexible structure elements are presented . Two cases of the central preliminary stress are investigated : without intermediate fastening of the tie to the flexible element and with the intermediate fastening in the middle of the element length. The given physical model can be applied to the flexible sloping shells and arches, membranes, large space antenna fields (besides flexible elements). The peculiarity of these systems is the possibility of the non-adjacent equilibrium form existence at the definite relations of the physical parameters . The transition from one stable equilibrium form to another, non-adjacent form, may be treated as jump. In this case they are called systems with buckling or the systems with two potential «gaps». These systems commenced the new section of the mathematical physics - the theory of chaos and strange attractors. The analysis of the solutions confirms the received for the first time by the author and given in effect of the oscillation period doubling of the system during the transition from the «small» oscillations relatively center to the >large< relatively all three equilibrium conditions. The character of the frequency (period) dependence on the free oscillation amplitudes of the non-linear system also confirms the received earlier result of the duality of the system behaviour : >small< oscillations possess the qualities of soft system; >large< oscillations possess the qualities of rigid system. The >small< oscillation natural frequency changing, depending on the oscillation amplitudes, is in the internal . Here the frequency takes zero value at the amplitude values Aa and Ad (or Aa and Ae ); the frequency takes maximum value at the amplitude value near point b .The >large< oscillation natural frequency changes in the interval . Here is also observed . The influence of the tie intermediate fastening doesn't introduce qualitative changes in the behaviour of the investigated system. It only increases ( four times ) the critical value of the preliminary tension force},
subject = {Bauteil},
language = {en}
}