@inproceedings{MisyuraVolkova,
author = {Misyura, E. and Volkova, Viktorija},
title = {APPLICATION OF THE MATHEMATICAL METHODS TO INVESTIGATION OF DYNAMICAL PROPERTIES OF A CABLE},
editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten},
organization = {Bauhaus-Universit{\"a}t Weimar},
doi = {10.25643/bauhaus-universitaet.3031},
url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30313},
pages = {7},
abstract = {The paper is devoted to the investigation of dynamical behavior of a cable under influence of various types of excitations. Such element has a low rigidity and is sensitive to dynamic effect. The structural scheme is a cable which ends are located at different level. The analysis of dynamical behavior of the cable under effect of kinematical excitation which is represented by the oscillations of the upper part of tower is given. The scheme of cable is accepted such, that lower end of an inclined cable is motionless. The motion of the upper end is assumed only in horizontal direction. The fourth-order Runge-Kutta method was realized in software. The fast Fourier transform was used for spectral analysis. Standard graphical software was adopted for presenting results of investigations. The mathematical model of oscillations of a cable was developed by the account of the viscous damping. The analysis of dynamical characteristics of a cable for various parameters of damping and kinematical excitation was carried out. The time series, spectral characteristics and amplitude-frequencies characteristics was obtained. The resonance amplitude for different oscillating regimes was estimated. It is noted that increasing of the coefficient of the viscous damping and decreasing of the amplitude of tower's oscillations reduces the value of the critical frequency and the resonant amplitudes.},
subject = {Architektur },
language = {en}
}