@misc{Voelker2005, type = {Master Thesis}, author = {V{\"o}lker, Conrad}, title = {Untersuchungen hinsichtlich des Einflusses von PCM auf die Raumlufttemperatur}, doi = {10.25643/bauhaus-universitaet.663}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6639}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2005}, abstract = {Das Ziel der vorliegenden Diplomarbeit war es, „Untersuchungen hinsichtlich des Einflusses von Phase Change Materials auf die Raumlufttemperatur" durchzuf{\"u}hren und anschließend die Ergebnisse auszuwerten. Dabei galt es, thermodynamische Grundlagen zu erl{\"a}utern sowie den derzeitigen Stand der Forschung darzulegen. Dies wurde umfassend bearbeitet, allerdings kann hierbei aufgrund des Umfangs und der Vielfalt im Bereich der internationalen PCM-Forschung kein Anspruch auf Vollst{\"a}ndigkeit erhoben werden. Ein Hauptteil dieser Arbeit bestand darin, den Versuchsaufbau der Referenzr{\"a}ume im Eiermann-Bau in Apolda als Grundlage f{\"u}r sp{\"a}tere Messungen detailliert zu beschreiben. Dabei wurde auf die gesamte Messanlage, die eingebrachten PCM sowie auf daraus resultierende physikalische Kenngr{\"o}ßen ausf{\"u}hrlich eingegangen. Es galt, geometrische, chemische und physikalische Einfl{\"u}sse einzusch{\"a}tzen, aber auch Schwachstellen aufzudecken, um die sp{\"a}ter folgenden Messreihen exakt auswerten zu k{\"o}nnen. Als kritisch einzusch{\"a}tzende Gr{\"o}ße fiel dabei besonders das eingebrachte Salzgemisch auf, welches hinsichtlich des Schmelz- und Kristallisationsbereiches als kaum beurteilbar auffiel. Dies konnte auch nach mehreren Untersuchungen, hier ist insbesondere die dynamische Differenzkalorimetrie zu nennen, nicht hinreichend gekl{\"a}rt werden. Basierend auf diesen Erkenntnissen wurden vergleichende Messreihen durchgef{\"u}hrt, welche durch verschiedene Luftwechselraten gestaltet wurden. Im Maximum konnte dabei im PCM-konditionierten Raum eine Reduktion der Temperatur um 6 K erreicht werden. Dabei muss allerdings ber{\"u}cksichtigt werden, dass diese Differenz gr{\"o}ßtenteils auf die thermische Masse des Salzgemischs zur{\"u}ckgef{\"u}hrt werden kann. Eine abschließende Messung ohne Salzgemisch zeigte, dass aufgrund des latenten W{\"a}rmespeicherverm{\"o}gens des PCM-Putzes lediglich eine thermische Differenz von 2 K erreicht werden kann. Hinsichtlich der Luftwechselrate ist anzumerken, dass die erwartete, vergleichsweise z{\"u}gige Ausk{\"u}hlung trotz L{\"u}ftung in der Praxis nicht nachvollzogen werden konnte. Zur Auswertung der gewonnenen Messwerte galt es, das am Lehrstuhl Bauphysik vorhandene mathematische Minimalmodell auf die am Objekt vorhandenen Randbedingungen anzupassen. Aus den Datenwolken der Atmosph{\"a}rentemperatur sowie der Globalstrahlung mussten Funktionen approximiert werden, da diese {\"a}ußeren Zw{\"a}nge einen entscheidenden Einfluss auf den Verlauf der Innenraumtemperatur aus{\"u}ben. Die Ergebnisse der Berechungen des Temperaturverlaufs k{\"o}nnen als zufrieden stellend betrachtet werden, jedoch wurde deutlich, dass ein genaues Nachstellen nicht m{\"o}glich ist. Dies ist vor allem auf die Tatsache zur{\"u}ckzuf{\"u}hren, dass das Minimalmodell lediglich eine Beschreibung der wesentlichen Prozesse mathematisch abbildet. Eine kritische Auseinandersetzung hinsichtlich allgemeiner Standpunkte als auch der Anwendbarkeit auf die Referenzr{\"a}ume wurde abschließend diskutiert.}, subject = {Latentw{\"a}rmespeicher}, language = {de} } @unpublished{VogelBenzVoelker, author = {Vogel, Albert and Benz, Alexander and V{\"o}lker, Conrad}, title = {Untersuchung des W{\"a}rme{\"u}bergangs von zyklisch beanspruchten Betonzylindern}, volume = {2020}, number = {Volume 42, Issue 3}, publisher = {John Wiley and Sons}, doi = {10.25643/bauhaus-universitaet.4181}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200619-41813}, pages = {131 -- 138}, abstract = {Wiederkehrende Belastungen, wie sie beispielsweise an Br{\"u}cken oder Windenergieanlagen auftreten, k{\"o}nnen innerhalb der Nutzungsdauer solcher Bauwerke bis zu 1.000.000.000 Lastwechsel erreichen. Um das dadurch eintretende Erm{\"u}dungsverhalten von Beton zu untersuchen, werden diese zyklischen Beanspruchungen in mechanischen Versuchen mit Pr{\"u}fzylindern nachgestellt. Damit Versuche mit solch hohen Lastwechselzahlen in akzeptablen Zeitdauern durchgef{\"u}hrt werden k{\"o}nnen, wird die Belastungsfrequenz erh{\"o}ht. Als Folge dieser erh{\"o}hten Belas-tungsfrequenz erw{\"a}rmen sich allerdings die Betonprobek{\"o}rper, was zu einem fr{\"u}heren, unrealistischen Versagenszeitpunkt f{\"u}hren kann, weshalb die Erw{\"a}rmung begrenzt werden muss. Um die W{\"a}rmefreisetzung in der Probe zu untersuchen, wurden Versuche und Simulationen durchgef{\"u}hrt. Im Beitrag wird die analytische und messtechnische Analyse des W{\"a}rme{\"u}bergangs an erw{\"a}rmten Betonzylindern vorgestellt. Resultierend daraus wird eine M{\"o}glichkeit zur Reduktion der Erw{\"a}rmung an zyklisch beanspruchten Betonzylindern vorgestellt.}, subject = {Zyklische Beanspruchung}, language = {de} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181221-38354}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Building Information Modeling}, language = {de} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3819}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181102-38190}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Geb{\"a}udeh{\"u}lle}, language = {de} } @article{BecherGenaAlsaadetal., author = {Becher, Lia and Gena, Amayu Wakoya and Alsaad, Hayder and Richter, Bernhard and Spahn, Claudia and V{\"o}lker, Conrad}, title = {The spread of breathing air from wind instruments and singers using schlieren techniques}, series = {Indoor Air}, volume = {2021}, journal = {Indoor Air}, number = {volume 31, issue 6}, publisher = {Wiley Blackwell}, address = {Oxford}, doi = {10.1111/ina.12869}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45817}, pages = {1798 -- 1814}, abstract = {The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.}, subject = {Covid-19}, language = {en} } @article{VoelkerKornadtOstry, author = {V{\"o}lker, Conrad and Kornadt, Oliver and Ostry, Milan}, title = {Temperature reduction due to the application of phase change materials}, series = {Energy and Buildings}, journal = {Energy and Buildings}, number = {40, 5}, doi = {10.25643/bauhaus-universitaet.3816}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38166}, pages = {937 -- 944}, abstract = {Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model.}, subject = {Raumklima}, language = {en} } @article{VoelkerAlsaad, author = {V{\"o}lker, Conrad and Alsaad, Hayder}, title = {Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model}, series = {Indoor Air}, volume = {2018}, journal = {Indoor Air}, number = {28, Heft 3}, doi = {10.25643/bauhaus-universitaet.3851}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190218-38517}, pages = {415 -- 425}, abstract = {This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model.}, subject = {Numerische Str{\"o}mungssimulation}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography}, series = {Building and Environment}, volume = {2020}, journal = {Building and Environment}, number = {Volume 167, article 106450}, publisher = {Elsevier}, address = {New York}, doi = {10.25643/bauhaus-universitaet.4511}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211008-45117}, pages = {11}, abstract = {Personalized ventilation (PV) is a mean of delivering conditioned outdoor air into the breathing zone of the occupants. This study aims to qualitatively investigate the personalized flows using two methods of visualization: (1) schlieren imaging using a large schlieren mirror and (2) thermography using an infrared camera. While the schlieren imaging was used to render the velocity and mass transport of the supplied flow, thermography was implemented to visualize the air temperature distribution induced by the PV. Both studies were conducted using a thermal manikin to simulate an occupant facing a PV outlet. As a reference, the flow supplied by an axial fan and a cased axial fan was visualized with the schlieren system as well and compared to the flow supplied by PV. Schlieren visualization results indicate that the steady, low-turbulence flow supplied by PV was able to penetrate the thermal convective boundary layer encasing the manikin's body, providing clean air for inhalation. Contrarily, the axial fan diffused the supplied air over a large target area with high turbulence intensity; it only disturbed the convective boundary layer rather than destroying it. The cased fan supplied a flow with a reduced target area which allowed supplying more air into the breathing zone compared to the fan. The results of thermography visualization showed that the supplied cool air from PV penetrated the corona-shaped thermal boundary layer. Furthermore, the supplied air cooled the surface temperature of the face, which indicates the large impact of PV on local thermal sensation and comfort.}, subject = {Bildverarbeitung}, language = {en} } @article{GenaVoelkerSettles, author = {Gena, Amayu Wakoya and V{\"o}lker, Conrad and Settles, Gary}, title = {Qualitative and quantitative schlieren optical measurement of the human thermal plume}, series = {Indoor Air}, volume = {2020}, journal = {Indoor Air}, number = {volume 30, issue 4}, publisher = {John Wiley \& Sons}, doi = {10.1111/ina.12674}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200709-41936}, pages = {757 -- 766}, abstract = {A new large-field, high-sensitivity, single-mirror coincident schlieren optical instrument has been installed at the Bauhaus-Universit{\"a}t Weimar for the purpose of indoor air research. Its performance is assessed by the non-intrusive measurement of the thermal plume of a heated manikin. The schlieren system produces excellent qualitative images of the manikin's thermal plume and also quantitative data, especially schlieren velocimetry of the plume's velocity field that is derived from the digital cross-correlation analysis of a large time sequence of schlieren images. The quantitative results are compared with thermistor and hot-wire anemometer data obtained at discrete points in the plume. Good agreement is obtained, once the differences between path-averaged schlieren data and planar anemometry data are reconciled.}, subject = {Raumklima}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Performance evaluation of ductless personalized ventilation in comparison with desk fans using numerical simulations}, series = {Indoor Air}, volume = {2020}, journal = {Indoor Air}, publisher = {John Wiley \& Sons Ltd}, doi = {10.1111/ina.12672}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200422-41407}, pages = {14}, abstract = {The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modelled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant.}, subject = {Behaglichkeit}, language = {en} }