@article{AlsaadHartmannHilbeletal., author = {Alsaad, Hayder and Hartmann, Maria and Hilbel, Rebecca and V{\"o}lker, Conrad}, title = {ENVI-met validation data accompanied with simulation data of the impact of facade greening on the urban microclimate}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {Volume 42, article 108200}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2022.108200}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220511-46455}, pages = {1 -- 13}, abstract = {This dataset consists mainly of two subsets. The first subset includes measurements and simulation data conducted to validate the simulation tool ENVI-met. The measurements were conducted at the campus of the Bauhaus-University Weimar in Weimar, Germany and consisted of recording exterior air temperature, globe temperature, relative humidity, and wind velocity at 1.5 m at four points on four different days. After the measurements, the geometry of the campus was modelled and meshed; the simulations were conducted using the weather data of the measurements days with the aim of investigating the accuracy of the model. The second data subset consists of ENVI-met simulation data of the potential of facade greening in improving the outdoor environment and the indoor air temperature during heatwaves in Central European cities. The data consist of the boundary conditions and the simulation output of two simulation models: with and without facade greening. The geometry of the models corresponded to a residential buildings district in Stuttgart, Germany. The simulation output consisted of exterior air temperature, mean radiant temperature, relative humidity, and wind velocity at 12 different probe points in the model in addition to the indoor air temperature of an exemplary building. The dataset presents both vertical profiles of the probed parameters as well as the time series output of the five-day simulation duration. Both data subsets correspond to the investigations presented in the co-submitted article [1].}, subject = {Messung}, language = {en} } @article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and V{\"o}lker, Conrad}, title = {Hygrothermal simulation data of a living wall system for decentralized greywater treatment}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {volume 40, article 107741}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2021.107741}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45483}, pages = {12}, abstract = {This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article [1].}, subject = {Kupplung}, language = {en} }