@phdthesis{Pham2007, author = {Pham, Hoang Anh}, title = {Dynamic system identification based on selective sensitivity}, doi = {10.25643/bauhaus-universitaet.80}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20070320-8483}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2007}, abstract = {System identification is often associated with the evaluation of damage for existing structures. Usually, dynamic test data are utilized to estimate the parameter values for a given structural model. This requires the solution of an inverse problem. Unfortunately, inverse problems in general are ill-conditioned, particularly with a large number of parameter to be determined. This means that the accuracy of the estimated parameter values is not sufficiently high in order to enable a damage identification. The goal of this study was to develop an experimental procedure which allows to identify the system parameters in substructures with high reliability. For this purpose, the method of selective sensitivity was employed to define special dynamic excitations, namely selectively sensitive excitation. Two different approaches have been introduced, which are the quasi-static approach and the iteratively experimental procedure. The former approach is appropriate for statically determinate structures and excitation frequencies below the structure's fundamental frequency. The latter method, which uses a-priori information about the parameters to be identified to set up an iterative experiment, can be applied to statically indeterminate structures. The viability of the proposed iterative procedure in detection of small changes of structure's stiffness was demonstrated by a simple laboratory experiment. The applicability of the strategy, however, depends largely on experimental capacity. It was also experienced that such a test is associate with expensive cost of equipments and time-consuming work.}, subject = {Systemidentifikation}, language = {en} }