@inproceedings{Nasser, author = {Nasser, Mourad}, title = {SEISMIC RESPONSE OF R/C FRAMES CONSIDERING DYNAMIC SOIL-STRUCTURE INTERACTION}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2875}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28759}, pages = {17}, abstract = {In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference.}, subject = {Angewandte Informatik}, language = {en} } @phdthesis{Nasser, author = {Nasser, Mourad}, title = {Quality Assessment of Dynamic Soil-Structure Interaction Models Using Energy Measures}, publisher = {Verlag der Bauhaus-Universit{\"a}t}, address = {Weimar}, isbn = {978-3-86068-494-8}, doi = {10.25643/bauhaus-universitaet.1854}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130220-18542}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {132}, abstract = {In this research work, an energy approach is employed for assessing quality in dynamic soil-structure interaction (SSI) models, and energy measures are introduced and investigated as general indicators of structural response. Dynamic SSI models with various abstraction levels are then investigated according to different coupling scenarios for soil and structure models. The hypothesis of increasing model uncertainty with decreasing complexity is investigated and a mathematical framework is provided for the treatment of model uncertainty. This framework is applied to a case study involving alternative models for incorporating dynamic SSI effects. In the evaluation process, energy measures are used within the framework of the \textit{adjustment factor} approach in order to quantitatively assess the uncertainty associated with SSI models. Two primary types of uncertainty are considered, namely the uncertainty in the model framework and the uncertainty in the model input parameters. Investigations on model framework uncertainty show that the more complex three-dimensional FE model has the best quality of the models investigated, whereas the Wolf SSI model produces the lowest model uncertainty of the simpler models. The fixed-base model produces the highest estimated uncertainty and accordingly the worst quality of all models investigated. These results confirm the hypothesis of increasing model uncertainty with decreasing complexity only when the assessment is based on the ratio of structural hysteretic energy to input energy as a response indicator.}, subject = {Boden-Bauwerk-Wechselwirkung}, language = {en} } @article{NasserSchwedlerWuttkeetal., author = {Nasser, Mourad and Schwedler, Michael and Wuttke, Frank and K{\"o}nke, Carsten}, title = {Seismic analysis of structural response using simplified soil-structure interaction models}, series = {Bauingenieur, D-A-CH-Mitteilungsblatt}, journal = {Bauingenieur, D-A-CH-Mitteilungsblatt}, abstract = {Seismic analysis of structural response using simplified soil-structure interaction models}, subject = {Angewandte Mathematik}, language = {en} }