@inproceedings{EckardtKoenke, author = {Eckardt, Stefan and K{\"o}nke, Carsten}, title = {ADAPTIVE SIMULATION OF THE DAMAGE BEHAVIOR OF CONCRETE USING HETEROGENEOUS MULTISCALE MODELS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2947}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29478}, pages = {15}, abstract = {In this paper an adaptive heterogeneous multiscale model, which couples two substructures with different length scales into one numerical model is introduced for the simulation of damage in concrete. In the presented approach the initiation, propagation and coalescence of microcracks is simulated using a mesoscale model, which explicitly represents the heterogeneous material structure of concrete. The mesoscale model is restricted to the damaged parts of the structure, whereas the undamaged regions are simulated on the macroscale. As a result an adaptive enlargement of the mesoscale model during the simulation is necessary. In the first part of the paper the generation of the heterogeneous mesoscopic structure of concrete, the finite element discretization of the mesoscale model, the applied isotropic damage model and the cohesive zone model are briefly introduced. Furthermore the mesoscale simulation of a uniaxial tension test of a concrete prism is presented and own obtained numerical results are compared to experimental results. The second part is focused on the adaptive heterogeneous multiscale approach. Indicators for the model adaptation and for the coupling between the different numerical models will be introduced. The transfer from the macroscale to the mesoscale and the adaptive enlargement of the mesoscale substructure will be presented in detail. A nonlinear simulation of a realistic structure using an adaptive heterogeneous multiscale model is presented at the end of the paper to show the applicability of the proposed approach to large-scale structures.}, subject = {Architektur }, language = {en} } @inproceedings{HaefnerKoenke, author = {H{\"a}fner, Stefan and K{\"o}nke, Carsten}, title = {MULTIGRID PRECONDITIONED CONJUGATE GRADIENT METHOD IN THE MECHANICAL ANALYSIS OF HETEROGENEOUS SOLIDS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2962}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29626}, pages = {29}, abstract = {A fast solver method called the multigrid preconditioned conjugate gradient method is proposed for the mechanical analysis of heterogeneous materials on the mesoscale. Even small samples of a heterogeneous material such as concrete show a complex geometry of different phases. These materials can be modelled by projection onto a uniform, orthogonal grid of elements. As one major problem the possible resolution of the concrete specimen is generally restricted due to (a) computation times and even more critical (b) memory demand. Iterative solvers can be based on a local element-based formulation while orthogonal grids consist of geometrical identical elements. The element-based formulation is short and transparent, and therefore efficient in implementation. A variation of the material properties in elements or integration points is possible. The multigrid method is a fast iterative solver method, where ideally the computational effort only increases linear with problem size. This is an optimal property which is almost reached in the implementation presented here. In fact no other method is known which scales better than linear. Therefore the multigrid method gains in importance the larger the problem becomes. But for heterogeneous models with very large ratios of Young's moduli the multigrid method considerably slows down by a constant factor. Such large ratios occur in certain heterogeneous solids, as well as in the damage analysis of solids. As solution to this problem the multigrid preconditioned conjugate gradient method is proposed. A benchmark highlights the multigrid preconditioned conjugate gradient method as the method of choice for very large ratio's of Young's modulus. A proposed modified multigrid cycle shows good results, in the application as stand-alone solver or as preconditioner.}, subject = {Architektur }, language = {en} } @inproceedings{AhmadZabelKoenke, author = {Ahmad, Sofyan and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2758}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27588}, pages = {14}, abstract = {In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.}, subject = {Angewandte Mathematik}, language = {en} } @article{AnsariZachariasKoenke, author = {Ansari, Meisam and Zacharias, Christin and K{\"o}nke, Carsten}, title = {Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration}, series = {materials}, volume = {2023}, journal = {materials}, number = {Volume 16, Issue 5, article 1836}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ma16051836}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230315-49370}, pages = {1 -- 18}, abstract = {Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates.}, subject = {Beton}, language = {en} } @article{AnsariTartaglioneKoenke, author = {Ansari, Meisam and Tartaglione, Fabiola and K{\"o}nke, Carsten}, title = {Experimental Validation of Dynamic Response of Small-Scale Metaconcrete Beams at Resonance Vibration}, series = {materials}, volume = {2023}, journal = {materials}, number = {volume 16, issue 14, article 5029}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ma16145029}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230818-64154}, pages = {1 -- 17}, abstract = {Structures and their components experience substantially large vibration amplitudes at resonance, which can cause their failure. The scope of this study is the utilization of silicone-coated steel balls in concrete as damping aggregates to suppress the resonance vibration. The heavy steel cores oscillate with a frequency close to the resonance frequency of the structure. Due to the phase difference between the vibrations of the cores and the structure, the cores counteract the vibration of the structure. The core-coating inclusions are randomly distributed in concrete similar to standard aggregates. This mixture is referred to as metaconcrete. The main goal of this work is to validate the ability of the inclusions to suppress mechanical vibration through laboratory experiments. For this purpose, two small-scale metaconcrete beams were cast and tested. In a free vibration test, the metaconcrete beams exhibited a larger damping ratio compared to a similar beam cast from conventional concrete. The vibration amplitudes of the metaconcrete beams at resonance were measured with a frequency sweep test. In comparison with the conventional concrete beam, both metaconcrete beams demonstrated smaller vibration amplitudes. Both experiments verified an improvement in the dynamic response of the metaconcrete beams at resonance vibration.}, subject = {Beton}, language = {en} } @unpublished{RadmardRahmaniKoenke, author = {Radmard Rahmani, Hamid and K{\"o}nke, Carsten}, title = {Passive Control of Tall Buildings Using Distributed Multiple Tuned Mass Dampers}, doi = {10.25643/bauhaus-universitaet.3859}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190311-38597}, pages = {43}, abstract = {The vibration control of the tall building during earthquake excitations is a challenging task due to their complex seismic behavior. This paper investigates the optimum placement and properties of the Tuned Mass Dampers (TMDs) in tall buildings, which are employed to control the vibrations during earthquakes. An algorithm was developed to spend a limited mass either in a single TMD or in multiple TMDs and distribute them optimally over the height of the building. The Non-dominated Sorting Genetic Algorithm (NSGA - II) method was improved by adding multi-variant genetic operators and utilized to simultaneously study the optimum design parameters of the TMDs and the optimum placement. The results showed that under earthquake excitations with noticeable amplitude in higher modes, distributing TMDs over the height of the building is more effective in mitigating the vibrations compared to the use of a single TMD system. From the optimization, it was observed that the locations of the TMDs were related to the stories corresponding to the maximum modal displacements in the lower modes and the stories corresponding to the maximum modal displacements in the modes which were highly activated by the earthquake excitations. It was also noted that the frequency content of the earthquake has significant influence on the optimum location of the TMDs.}, subject = {Schwingungsd{\"a}mpfer}, language = {en} }