@inproceedings{EckardtKoenke, author = {Eckardt, Stefan and K{\"o}nke, Carsten}, title = {ENERGY RELEASE CONTROL FOR NONLINEAR MESOSCALE SIMULATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2841}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28414}, pages = {5}, abstract = {In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations.}, subject = {Angewandte Informatik}, language = {en} }