@inproceedings{HammBeissertKoenig, author = {Hamm, Matthias and Beißert, Ulrike and K{\"o}nig, Markus}, title = {SIMULATION-BASED OPTIMIZATION OF CONSTRUCTION SCHEDULES BY USING PARETO SIMULATED ANNEALING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2849}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28499}, pages = {13}, abstract = {Within the scheduling of construction projects, different, partly conflicting objectives have to be considered. The specification of an efficient construction schedule is a challenging task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-called metaheuristics have been developed for scheduling problems to find near-optimal solutions in reasonable time. This paper presents a Simulated Annealing concept to determine near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic optimization approach for solving complex combinatorial problems. To enable dealing with several optimization objectives the Pareto optimization concept is applied. Thus, the optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting exactly one practicable and reasonable schedule. A flexible constraint-based simulation approach is used to generate possible neighboring solutions very quickly during the optimization process. The essential aspects of the developed Pareto Simulated Annealing concept are presented in detail.}, subject = {Angewandte Informatik}, language = {en} }