@unpublished{KavrakovArgentiniOmarinietal., author = {Kavrakov, Igor and Argentini, Tommaso and Omarini, Simone and Rocchi, Daniele and Morgenthal, Guido}, title = {Determination of complex aerodynamic admittance of bridge decks under deterministic gusts using the Vortex Particle Method}, doi = {10.25643/bauhaus-universitaet.4088}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200206-40883}, abstract = {Long-span bridges are prone to wind-induced vibrations. Therefore, a reliable representation of the aerodynamic forces acting on a bridge deck is of a major significance for the design of such structures. This paper presents a systematic study of the two-dimensional (2D) fluid-structure interaction of a bridge deck under smooth and turbulent wind conditions. Aerodynamic forces are modeled by two approaches: a computational fluid dynamics (CFD) model and six semi-analytical models. The vortex particle method is utilized for the CFD model and the free-stream turbulence is introduced by seeding vortex particles upstream of the deck with prescribed spectral characteristics. The employed semi-analytical models are based on the quasi-steady and linear unsteady assumptions and aerodynamic coefficients obtained from CFD analyses. The underlying assumptions of the semi-analytical aerodynamic models are used to interpret the results of buffeting forces and aeroelastic response due to a free-stream turbulence in comparison with the CFD model. Extensive discussions are provided to analyze the effect of linear fluid memory and quasi-steady nonlinearity from a CFD perspective. The outcome of the analyses indicates that the fluid memory is a governing effect in the buffeting forces and aeroelastic response, while the effect of the nonlinearity is overestimated by the quasi-steady models. Finally, flutter analyses are performed and the obtained critical velocities are further compared with wind tunnel results, followed by a brief examination of the post-flutter behavior. The results of this study provide a deeper understanding of the extent of which the applied models are able to replicate the physical processes for fluid-structure interaction phenomena in bridge aerodynamics and aeroelasticity.}, subject = {Bridge}, language = {en} }