@incollection{Leonhard2005, author = {Leonhard, Karin}, title = {Wolken modellieren}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 95-105}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 95-105}, doi = {10.25643/bauhaus-universitaet.773}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7734}, year = {2005}, abstract = {Wolkenformationen und ihre Verwandlungen auf bilddigitalem Weg zu simulieren und in klimatologische Studien zu integrieren, ist eine der komplexesten Aufgaben der aktuellen Umweltphysik. Die Schwierigkeit erkl{\"a}rt sich zum einen sicherlich aus der Konturlosigkeit der nebul{\"o}sen Gebilde - ihre formale Instabilit{\"a}t und dynamische Prozessualit{\"a}t widerspricht und widersetzt sich der Prognoset{\"a}tigkeit der Meteorologen bzw. Klimatologen. Immer wieder stellt sich dabei die Frage nach der Codier- und Fixierbarkeit der diffusen Formverl{\"a}ufe, nach der Umrissbildung und Bestimmung eines prinzipiell ungekl{\"a}rten Figur-Grund-Verh{\"a}ltnisses. Im Folgenden soll die Problemstellung komplexer Simulationstechniken auf klimatologische Bildgebungsverfahren angewandt werden. ...}, subject = {Medien}, language = {de} } @incollection{Bergermann2005, author = {Bergermann, Ulrike}, title = {Durchmusterung. Wieners Himmel}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 81-92}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 81-92}, doi = {10.25643/bauhaus-universitaet.770}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7702}, year = {2005}, abstract = {Norbert Wieners >Cybernetics> von 1948 geht aus von einem Vergleich z{\"a}hlender, durchmusternder Astronomie mit der neuen, statistikbasierten Meteorologie. Das Buch beginnt mit der ersten Strophe von >Weißt du vieviel Sternlein stehen<. ... Dieses Liedchen ist ein interessantes Thema f{\"u}r die Philosophie und die Geschichte der Wissenschaft, indem es zwei Wissenschaften nebeneinander stellt, die einerseits sich beide mit der Beobachtung des Himmels {\"u}ber uns besch{\"a}ftigen, andererseits aber beinahe in jeder Beziehung h{\"o}chst gegens{\"a}tzlich sind. Die Astronomie ist die {\"a}lteste der Wissenschaften, w{\"a}hrend die Meteorologie zu den j{\"u}ngsten z{\"a}hlt, die erst anfangen, den Namen zu verdienen. ...}, subject = {Medien}, language = {de} } @incollection{Vogl2005, author = {Vogl, Joseph}, title = {Wolkenbotschaft}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 69-79}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 69-79}, doi = {10.25643/bauhaus-universitaet.769}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7690}, year = {2005}, abstract = {Lange Zeit, so scheint es, machten die Wolken und ein wolkiger Himmel den Schlaf der Physik. Als n{\"a}mlich Galileo Galilei im M{\"a}rz 1610 und mit einiger Hast seinen >Sidereus Nuncius<, seine Sternenbotschaft oder seinen Sternenboten publizierte, musste er mit dem Protokoll langer und schlafloser Wintern{\"a}chte auch einige Pausen, einige L{\"u}cken und Leerstellen verzeichnen. Denn dieser Sternenbote, der die astronomische Nachricht von neuen und bisher ungesehenen Gestirnen vom n{\"a}chtlichen Himmel auf die Erde herabholte, wurde verschiedentlich und auf empfindliche Weise gest{\"o}rt. ...}, subject = {Medien}, language = {de} } @incollection{Reichert2005, author = {Reichert, Ram{\´o}n}, title = {Forming the formless : John Constable's Cloud studies}, doi = {10.25643/bauhaus-universitaet.768}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7686}, year = {2005}, abstract = {W{\"a}hrend der Sommermonate der Jahre 1821 und 1822 ging der englische Landschaftsmaler John Constable (1776-1837) jeden Morgen von seinem Haus in Lower Terrace am S{\"u}dende des Dorfes Hamstead zu den H{\"a}ngen am Prospect Walk, um Wolkenbilder zu malen. T{\"a}glich kehrte er an denselben Ort zur{\"u}ck, um ein Bild des Himmels im Verlauf der Zeit zu malen. Sp{\"a}ter wurden die mehr als hundert losen Bl{\"a}tter als >Cloud Studies< zusammengefasst und geh{\"o}ren seither zu den am meisten bewunderten Werken der zeitgen{\"o}ssischen Landschaftsmalerei und zum Bilderkanon der europ{\"a}ischen Romantik. Constable war keineswegs der erste Maler, der Wolken nach der Natur malte, aber er geh{\"o}rte zu den ersten, der die handwerklichen Techniken einer alten Kunst - der Malerei - mit den Definitionen der Meteorologie - einer jungen Wissenschaft - verkn{\"u}pfte. ...}, subject = {Medien}, language = {de} } @incollection{Damisch2005, author = {Damisch, Hubert}, title = {Die Geschichte und die Geometrie}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 11-25}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 11-25}, doi = {10.25643/bauhaus-universitaet.766}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7667}, year = {2005}, abstract = {Eignet sich das perspektivische System zur Repr{\"a}sentation von Ph{\"a}nomenen, die die gewohnten Maße der menschlichen Ordnung sprengen? Anders gesagt: Bieten g{\"o}ttliche Handlungen, die diese Welt auf das Jenseits hin {\"o}ffnen, und allgemeiner mystische - oder sogar nur physische - Begegnungen zwischen Himmel und Erde, bieten sie Stoff zur Repr{\"a}sentation? ...}, subject = {Medien}, language = {de} } @incollection{Heilmann2005, author = {Heilmann, Thomas}, title = {Schleierwolken des Realen}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 27-38}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 27-38}, doi = {10.25643/bauhaus-universitaet.765}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7658}, year = {2005}, abstract = {In seinem XX. Seminar hat Jacques Lacan ein Modell vorgeschlagen, zu dem seine eigenen Erl{\"a}uterungen relativ kryptisch blieben. An den Ecken eines Dreiecks sind die drei Kategorien des Symbolischen, des Imagin{\"a}ren und des Realen angeordnet, an den Seiten des Dreiecks finden sich drei Reste des Realen ... Die Wolke, so wie sie im Folgenden auftritt, l{\"a}sst sich dem Kontinuum des Realen zuordnen, das im Symbolischen nicht aufgehen kann. {\"U}ber die drei realen Reste wird es aber m{\"o}glich, in einzelnen historischen Episoden Wolkeneffekter auszumachen und zu benennen. ...}, subject = {Medien}, language = {de} } @incollection{Bock2005, author = {Bock, Wolfgang}, title = {Dialektik des Nebels. Zu den Motiven der Wolken und des Wetters bei Walter Benjamin}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 41-55}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 41-55}, doi = {10.25643/bauhaus-universitaet.764}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7647}, year = {2005}, abstract = {Wolkenlosigkeit als Mangel, Wolken als Medium und die Vorstellung eines Wolkenmannes sind Stichworte, unter denen auch Walter Benjamins Besch{\"a}ftigung mit dem Wetter steht. Benjamin rekurriert an verschiedenen Stellen seines Werkes auf solche Motive. ...}, subject = {Medien}, language = {de} } @incollection{EngellSiegertVogl2005, author = {Engell, Lorenz and Siegert, Bernhard and Vogl, Joseph}, title = {Wolken - Editorial}, series = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 5-8}, booktitle = {Wolken / hrsg. von Lorenz Engell; Bernhard Siegert; Joseph Vogl. - Weimar : Verl. der Bauhaus-Univ., 2005. - S. 5-8}, doi = {10.25643/bauhaus-universitaet.763}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7631}, year = {2005}, abstract = {Der neue Band des Archivs f{\"u}r Mediengeschichte besch{\"a}ftigt sich mit Wolken und geht dabei ganz unterschiedlichen Fragestellungen nach. Einerseits verfolgen die Beitr{\"a}ge das naturwissenschaftliche Ph{\"a}nomen»Wolke«, das zu Beginn des 19. Jhds. seine Einteilung in cirrus, cumulus, stratus und nimbus erhielt und seitdem zum bis heute schwer zu entschl{\"u}sselndem Forschungsgegenstand wurde. Andererseits ist die Wolke aber auch begehrter k{\"u}nstlerischer Gegenstand. Wolkenmalerei, Wolkenfotografie sowie matte painting und digitale Animation zur Wolkendarstellung im Medium Film sind u. a. Themen dieses Heftes. Und auch eine »schwarze« Seite der Wolke spielt in diesem Band eine Rolle: die Wolkenformationen der Atompilze, die in den 1950er Jahren beliebtes Medienobjekt}, subject = {Medien}, language = {de} } @incollection{Bimber2005, author = {Bimber, Oliver}, title = {HOLOGRAPHICS: Combining Holograms with Interactive Computer Graphics}, series = {New Directions in Holography and Speckles}, booktitle = {New Directions in Holography and Speckles}, doi = {10.25643/bauhaus-universitaet.736}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7365}, year = {2005}, abstract = {Among all imaging techniques that have been invented throughout the last decades, computer graphics is one of the most successful tools today. Many areas in science, entertainment, education, and engineering would be unimaginable without the aid of 2D or 3D computer graphics. The reason for this success story might be its interactivity, which is an important property that is still not provided efficiently by competing technologies - such as holography. While optical holography and digital holography are limited to presenting a non-interactive content, electroholography or computer generated holograms (CGH) facilitate the computer-based generation and display of holograms at interactive rates [2,3,29,30]. Holographic fringes can be computed by either rendering multiple perspective images, then combining them into a stereogram [4], or simulating the optical interference and calculating the interference pattern [5]. Once computed, such a system dynamically visualizes the fringes with a holographic display. Since creating an electrohologram requires processing, transmitting, and storing a massive amount of data, today's computer technology still sets the limits for electroholography. To overcome some of these performance issues, advanced reduction and compression methods have been developed that create truly interactive electroholograms. Unfortunately, most of these holograms are relatively small, low resolution, and cover only a small color spectrum. However, recent advances in consumer graphics hardware may reveal potential acceleration possibilities that can overcome these limitations [6]. In parallel to the development of computer graphics and despite their non-interactivity, optical and digital holography have created new fields, including interferometry, copy protection, data storage, holographic optical elements, and display holograms. Especially display holography has conquered several application domains. Museum exhibits often use optical holograms because they can present 3D objects with almost no loss in visual quality. In contrast to most stereoscopic or autostereoscopic graphics displays, holographic images can provide all depth cues—perspective, binocular disparity, motion parallax, convergence, and accommodation—and theoretically can be viewed simultaneously from an unlimited number of positions. Displaying artifacts virtually removes the need to build physical replicas of the original objects. In addition, optical holograms can be used to make engineering, medical, dental, archaeological, and other recordings—for teaching, training, experimentation and documentation. Archaeologists, for example, use optical holograms to archive and investigate ancient artifacts [7,8]. Scientists can use hologram copies to perform their research without having access to the original artifacts or settling for inaccurate replicas. Optical holograms can store a massive amount of information on a thin holographic emulsion. This technology can record and reconstruct a 3D scene with almost no loss in quality. Natural color holographic silver halide emulsion with grain sizes of 8nm is today's state-of-the-art [14]. Today, computer graphics and raster displays offer a megapixel resolution and the interactive rendering of megabytes of data. Optical holograms, however, provide a terapixel resolution and are able to present an information content in the range of terabytes in real-time. Both are dimensions that will not be reached by computer graphics and conventional displays within the next years - even if Moore's law proves to hold in future. Obviously, one has to make a decision between interactivity and quality when choosing a display technology for a particular application. While some applications require high visual realism and real-time presentation (that cannot be provided by computer graphics), others depend on user interaction (which is not possible with optical and digital holograms). Consequently, holography and computer graphics are being used as tools to solve individual research, engineering, and presentation problems within several domains. Up until today, however, these tools have been applied separately. The intention of the project which is summarized in this chapter is to combine both technologies to create a powerful tool for science, industry and education. This has been referred to as HoloGraphics. Several possibilities have been investigated that allow merging computer generated graphics and holograms [1]. The goal is to combine the advantages of conventional holograms (i.e. extremely high visual quality and realism, support for all depth queues and for multiple observers at no computational cost, space efficiency, etc.) with the advantages of today's computer graphics capabilities (i.e. interactivity, real-time rendering, simulation and animation, stereoscopic and autostereoscopic presentation, etc.). The results of these investigations are presented in this chapter.}, subject = {Erweiterte Realit{\"a}t }, language = {en} } @incollection{Bimber2006, author = {Bimber, Oliver}, title = {Projector-Based Augmentation}, series = {Emerging Technologies of Augmented Reality: Interfaces \& Design}, booktitle = {Emerging Technologies of Augmented Reality: Interfaces \& Design}, doi = {10.25643/bauhaus-universitaet.735}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-7353}, year = {2006}, abstract = {Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments - without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces.}, subject = {Erweiterte Realit{\"a}t }, language = {en} }