@article{LondongBarthSoebke, author = {Londong, J{\"o}rg and Barth, Marcus and S{\"o}bke, Heinrich}, title = {Reducing antimicrobial resistances by source separation of domestic wastewater}, series = {Frontiers in Environmental Health}, volume = {2023}, journal = {Frontiers in Environmental Health}, number = {Volume 2, article 1151898}, publisher = {Frontiers Media}, address = {Lausanne}, doi = {10.3389/fenvh.2023.1151898}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230403-49483}, pages = {1 -- 5}, abstract = {Antimicrobial resistances (AMR) are ranked among the top ten threats to public health and societal development worldwide. Toilet wastewater contained in domestic wastewater is a significant source of AMR entering the aquatic environment. The current commonly implemented combined sewer systems at times cause overflows during rain events, resulting in the discharge of untreated wastewater into the aquatic environment, thus promoting AMR. In this short research article, we describe an approach to transform combined sewer systems into source separation-modified combined sewer systems that separately treat toilet wastewater. We employ simulations for demonstrating that source separation-modified combined sewer systems reduce the emission of AMR- causing substances by up to 11.5 logarithm levels. Thus, source separation- modified combined sewer systems are amongst the most effective means of combating AMR. KEYWORDS}, subject = {Allgemeinheit}, language = {en} } @article{AicherBoermelLondongetal., author = {Aicher, Andreas and B{\"o}rmel, Melanie and Londong, J{\"o}rg and Beier, Silvio}, title = {Vertical green system for gray water treatment: Analysis of the VertiKKA-module in a field test}, series = {Frontiers in Environmental Science}, volume = {2022}, journal = {Frontiers in Environmental Science}, number = {Volume 10 (2022), article 976005}, publisher = {Frontiers Media}, address = {Lausanne}, doi = {10.3389/fenvs.2022.976005}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230124-48840}, pages = {1 -- 7}, abstract = {This work presents a modular Vertical Green System (VGS) for gray water treatment, developed at the Bauhaus-Universit{\"a}t Weimar. The concept was transformed into a field study with four modules built and tested with synthetic gray water. Each module set contains a small and larger module with the same treatment substrate and was fed hourly. A combination of lightweight structural material and biochar of agricultural residues and wood chips was used as the treatment substrate. In this article, we present the first 18 weeks of operation. Regarding the treatment efficiency, the parameters chemical oxygen demand (COD), total phosphorous (TP), ortho-phosphate (ortho-P), total bound nitrogen (TNb), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) were analyzed and are presented in this work. The results of the modules with agricultural residues are promising. Up to 92\% COD reduction is stated in the data. The phosphate and nitrogen fractions are reduced significantly in these modules. By contrast, the modules with wood chips reduce only 67\% of the incoming COD and respectively less regarding phosphates and the nitrogen fraction.}, subject = {Grauwasser}, language = {en} } @article{MehlingSchnabelLondong, author = {Mehling, Simon and Schnabel, Tobias and Londong, J{\"o}rg}, title = {Investigation on Energetic Efficiency of Reactor Systems for Oxidation of Micro-Pollutants by Immobilized Active Titanium Dioxide Photocatalysis}, series = {Water}, volume = {2022}, journal = {Water}, number = {Volume 14, issue 7, article 2681}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w14172681}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220912-47130}, pages = {1 -- 15}, abstract = {In this work, the degradation performance for the photocatalytic oxidation of eight micropollutants (amisulpride, benzotriazole, candesartan, carbamazepine, diclofenac, gabapentin, methlybenzotriazole, and metoprolol) within real secondary effluent was investigated using three different reactor designs. For all reactor types, the influence of irradiation power on its reaction rate and energetic efficiency was investigated. Flat cell and batch reactor showed almost similar substance specific degradation behavior. Within the immersion rotary body reactor, benzotriazole and methylbenzotriazole showed a significantly lower degradation affinity. The flat cell reactor achieved the highest mean degradation rate, with half time values ranging from 5 to 64 min with a mean of 18 min, due to its high catalysts surface to hydraulic volume ratio. The EE/O values were calculated for all micro-pollutants as well as the mean degradation rate constant of each experimental step. The lowest substance specific energy per order (EE/O) values of 5 kWh/m3 were measured for benzotriazole within the batch reactor. The batch reactor also reached the lowest mean values (11.8-15.9 kWh/m3) followed by the flat cell reactor (21.0-37.0 kWh/m3) and immersion rotary body reactor (23.9-41.0 kWh/m3). Catalyst arrangement and irradiation power were identified as major influences on the energetic performance of the reactors. Low radiation intensities as well as the use of submerged catalyst arrangement allowed a reduction in energy demand by a factor of 3-4. A treatment according to existing treatment goals of wastewater treatment plants (80\% total degradation) was achieved using the batch reactor with a calculated energy demand of 7000 Wh/m3.}, subject = {Fotokatalyse}, language = {en} } @article{MehlingSchnabelLondong, author = {Mehling, Simon and Schnabel, Tobias and Londong, J{\"o}rg}, title = {Photocatalytic ozonation in an immersion rotary body reactor for the removal of micro-pollutants from the effluent of wastewater treatment plants}, series = {Water Science \& Technology}, volume = {2022}, journal = {Water Science \& Technology}, number = {volume 85, issue 1}, publisher = {IWA Publishing}, address = {London}, doi = {10.2166/wst.2021.617}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45865}, pages = {535 -- 548}, abstract = {Carrier-bound titanium dioxide catalysts were used in a photocatalytic ozonation reactor for the degradation of micro-pollutants in real wastewater. A photocatalytic immersion rotary body reactor with a 36-cm disk diameter was used, and was irradiated using UV-A light-emitting diodes. The rotating disks were covered with catalysts based on stainless steel grids coated with titanium dioxide. The dosing of ozone was carried out through the liquid phase via an external enrichment and a supply system transverse to the flow direction. The influence of irradiation power and ozone dose on the degradation rate for photocatalytic ozonation was investigated. In addition, the performance of the individual processes photocatalysis and ozonation were studied. The degradation kinetics of the parent compounds were determined using liquid chromatography tandem mass spectrometry. First-order kinetics were determined for photocatalysis and photocatalytic ozonation. A maximum reaction rate of the reactor was determined, which could be achieved by both photocatalysis and photocatalytic ozonation. At a dosage of 0.4 mg /mg DOC, the maximum reaction rate could be achieved using 75\% of the irradiation power used for sole photocatalysis, allowing increases in the energetic efficiency of photocatalytic wastewater treatment processes. The process of photocatalytic ozonation is suitable to remove a wide spectrum of micro-pollutants from wastewater.}, subject = {Abwasserreinigung}, language = {en} } @article{LondongBarthSoebke, author = {Londong, J{\"o}rg and Barth, Marcus and S{\"o}bke, Heinrich}, title = {Modeling and Simulation of Source Separation in Sanitation Systems for Reducing Emissions of Antimicrobial Resistances}, series = {Water}, volume = {2021}, journal = {Water}, number = {Volume 13, issue 23, article 3342}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w13233342}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211202-45338}, pages = {1 -- 19}, abstract = {Antimicrobial resistance (AMR) is identified by the World Health Organization (WHO) as one of the top ten threats to public health worldwide. In addition to public health, AMR also poses a major threat to food security and economic development. Current sanitation systems contribute to the emergence and spread of AMR and lack effective AMR mitigation measures. This study assesses source separation of blackwater as a mitigation measure against AMR. A source-separation-modified combined sanitation system with separate collection of blackwater and graywater is conceptually described. Measures taken at the source, such as the separate collection and discharge of material flows, were not considered so far on a load balance basis, i.e., they have not yet been evaluated for their effectiveness. The sanitation system described is compared with a combined system and a separate system regarding AMR emissions by means of simulation. AMR is represented in the simulation model by one proxy parameter each for antibiotics (sulfamethoxa-zole), antibiotic-resistant bacteria (extended-spectrum beta-lactamase E. Coli), and antibiotic re-sistance genes (blaTEM). The simulation results suggest that the source-separation-based sanitation system reduces emissions of antibiotic-resistant bacteria and antibiotic resistance genes into the aquatic environment by more than six logarithm steps compared to combined systems. Sulfa-methoxazole emissions can be reduced by 75.5\% by keeping blackwater separate from graywater and treating it sufficiently. In summary, sanitation systems incorporating source separation are, to date, among the most effective means of preventing the emission of AMR into the aquatic envi-ronment.}, subject = {Abwasser}, language = {en} } @article{WolfLondong, author = {Wolf, Mario and Londong, J{\"o}rg}, title = {Transformation der Siedlungswasserwirtschaft - Steuerungsmechanismen im Diskurs ressourcenorientierter Systemans{\"a}tze am Beispiel von Th{\"u}ringen}, series = {Raumforschung und Raumordnung}, volume = {2020}, journal = {Raumforschung und Raumordnung}, number = {Band 78, Heft 4}, publisher = {Sciendo}, doi = {10.2478/rara-2020-0012}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42731}, pages = {397 -- 411}, abstract = {Neuartige Sanit{\"a}rsysteme zielen auf eine ressourcenorientierte Verwertung von Abwasser ab. Erreicht werden soll dies durch die separate Erfassung von Abwasserteilstr{\"o}men. In den Fach{\"o}ffentlichkeiten der Wasserwirtschaft und Raumplanung werden neuartige Sanit{\"a}rsysteme als ein geeigneter Ansatz f{\"u}r die zuk{\"u}nftige Sicherung der Abwasserentsorgung in l{\"a}ndlichen R{\"a}umen betrachtet. Die Praxistauglichkeit dieser Systeme wurde zwar in Forschungsprojekten nachgewiesen, bisher erschweren jedoch f{\"u}r Abwasserentsorger vielf{\"a}ltige Risiken die Einf{\"u}hrung einer ressourcenorientierten Abwasserbewirtschaftung. Ausgehend von einer Untersuchung der Kontexte bei der Umsetzung eines neuartigen Sanit{\"a}rsystems im l{\"a}ndlichen Raum Th{\"u}ringens wird in diesem Beitrag der Frage nachgegangen, wie auf Landesebene mit dem abwasserwirtschaftlichen Instrumentarium die Einf{\"u}hrung von ressourcenorientierten Systemans{\"a}tzen unterst{\"u}tzt werden kann. Zentrale Elemente des Beitrags sind die Darstellung der wesentlichen Transformationsrisiken in Bezug auf die Einf{\"u}hrung innovativer L{\"o}sungsans{\"a}tze, eine Erl{\"a}uterung der spezifischen abwasserwirtschaftlichen Instrumente sowie die Darlegung von Steuerungsans{\"a}tzen,mit denen die Einf{\"u}hrung von neuartigen Sanit{\"a}rsystemen gef{\"o}rdert werden kann. Im Ergebnis wird die Realisierbarkeit von neuartigen Sanit{\"a}rsystemen durch den strategischen Einsatz des Instrumentariums deutlich, gleichwohl die Wasserwirtschaft durch die Erweiterung der bisherigen Systemgrenzen auf die Kooperation mit anderen Bereichen der Daseinsvorsorge angewiesen ist.}, subject = {Raumordnung}, language = {de} }