@article{AreiasRabczuk, author = {Areias, Pedro and Rabczuk, Timon}, title = {Finite strain fracture of plates and shells with configurational forces and edge rotation}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, abstract = {Finite strain fracture of plates and shells with configurational forces and edge rotation}, subject = {Angewandte Mathematik}, language = {en} } @article{BanihaniRabczukAlmomani, author = {Banihani, Suleiman and Rabczuk, Timon and Almomani, Thakir}, title = {POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2013/386501}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31203}, abstract = {The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced.}, subject = {Chirurgie}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of flaws in piezoelectric structures using extended FEM}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, pages = {373 -- 389}, abstract = {Detection of flaws in piezoelectric structures using extended FEM}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWeiFanetal., author = {Zhao, Jun-Hua and Wei, Ning and Fan, Z. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical properties of three types of carbon allotropes}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Mechanical properties of three types of carbon allotropes}, subject = {Angewandte Mathematik}, language = {en} } @article{PhanDaoNguyenXuanThaiHoangetal., author = {Phan-Dao, H. and Nguyen-Xuan, Hung and Thai-Hoang, C. and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {An edge-based smoothed finite element method for analysis of laminated composite plates}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {An edge-based smoothed finite element method for analysis of laminated composite plates}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Why twisting angles are diverse in graphene Moir'e patterns?}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Why twisting angles are diverse in graphene Moir'e patterns?}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangRabczuk, author = {Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical Oscillation of Kinked Silicon Nanowires: a Natural Nanoscale Spring}, series = {Applied Physics Letters}, journal = {Applied Physics Letters}, abstract = {Mechanical Oscillation of Kinked Silicon Nanowires: a Natural Nanoscale Spring}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThoiPhungVanRabczuketal., author = {Nguyen-Thoi, T. and Phung-Van, P. and Rabczuk, Timon and Nguyen-Xuan, Hung and Le-Van, C.}, title = {An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems}, subject = {Angewandte Mathematik}, language = {en} } @article{LeNguyenXuanAskesetal., author = {Le, C.V. and Nguyen-Xuan, Hung and Askes, H. and Rabczuk, Timon and Nguyen-Thoi, T.}, title = {Computation of limit load using edge-based smoothed finite element method and second-order cone programming}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {Computation of limit load using edge-based smoothed finite element method and second-order cone programming}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWangJiangetal., author = {Zhao, Jun-Hua and Wang, L. and Jiang, Jin-Wu and Wang, Z. and Guo, Wanlin and Rabczuk, Timon}, title = {A comparative study of two molecular mechanics models based on harmonic potentials}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {A comparative study of two molecular mechanics models based on harmonic potentials}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhaoWeietal., author = {Zhang, Yancheng and Zhao, Jiyun and Wei, Ning and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {1714 -- 1721}, abstract = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenXuanLiuBordasetal., author = {Nguyen-Xuan, Hung and Liu, G.R. and Bordas, St{\´e}phane Pierre Alain and Natarajan, S. and Rabczuk, Timon}, title = {An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {252 -- 273}, abstract = {An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniBordasetal., author = {Talebi, Hossein and Silani, Mohammad and Bordas, St{\´e}phane Pierre Alain and Kerfriden, Pierre and Rabczuk, Timon}, title = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{KerfridenGouryRabczuketal., author = {Kerfriden, Pierre and Goury, O. and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain}, title = {A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {169 -- 188}, abstract = {A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics}, subject = {Angewandte Mathematik}, language = {en} } @article{KerfridenSchmidtRabczuketal., author = {Kerfriden, Pierre and Schmidt, K.M. and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain}, title = {Statistical extraction of process zones and representative subspaces in fracture of random composites}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Statistical extraction of process zones and representative subspaces in fracture of random composites}, subject = {Angewandte Mathematik}, language = {en} } @article{BakarKramerBordasetal., author = {Bakar, I. and Kramer, O. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Optimization of Elastic Properties and Weaving Patterns of Woven Composites}, series = {Composite Structures}, journal = {Composite Structures}, pages = {575 -- 591}, abstract = {Optimization of Elastic Properties and Weaving Patterns of Woven Composites}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukDiasdaCosta, author = {Areias, Pedro and Rabczuk, Timon and Dias-da-Costa, D.}, title = {Assumed-metric spherically-interpolated quadrilateral shell element}, series = {Finite Elements in Analysis and Design}, journal = {Finite Elements in Analysis and Design}, pages = {53 -- 67}, abstract = {Assumed-metric spherically-interpolated quadrilateral shell element}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangParkGalletal., author = {Jiang, Jin-Wu and Park, Harold S. and Gall, K. and Leach, A. and Rabczuk, Timon}, title = {A Surface Stacking Fault Energy Approach to Predicting Defect Nucleation in Surface-Dominated Nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, abstract = {A Surface Stacking Fault Energy Approach to Predicting Defect Nucleation in Surface-Dominated Nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangZhaoRabczuk, author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Rabczuk, Timon}, title = {Size-Sensitive Young's Modulus of Kinked Silicon Nanowires}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/24/18/185702}, abstract = {We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThoiPhungVanRabczuketal., author = {Nguyen-Thoi, T. and Phung-Van, P. and Rabczuk, Timon and Nguyen-Xuan, Hung and Le-Van, C.}, title = {Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniTalebiArnoldetal., author = {Silani, Mohammad and Talebi, Hossein and Arnold, Daniel and Ziaei-Rad, S. and Rabczuk, Timon}, title = {On the coupling of a commercial finite element package with lammps for multiscale modeling of materials}, series = {Steel Research International}, journal = {Steel Research International}, abstract = {On the coupling of a commercial finite element package with lammps for multiscale modeling of materials}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukDiasdaCosta, author = {Areias, Pedro and Rabczuk, Timon and Dias-da-Costa, D.}, title = {Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach}, series = {CMES: Computer Modeling in Engineering and Sciences}, journal = {CMES: Computer Modeling in Engineering and Sciences}, abstract = {Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach}, subject = {Angewandte Mathematik}, language = {en} } @article{KhosravaniRabczuk, author = {Khosravani, M.R. and Rabczuk, Timon}, title = {Determiniation of shear modulus for double and multi-walled Carbon Nanotubes}, series = {Mechanics of Composite Materials}, journal = {Mechanics of Composite Materials}, abstract = {Determiniation of shear modulus for double and multi-walled Carbon Nanotubes}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangZhuangRabczuk, author = {Jiang, Jin-Wu and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Orientation dependent thermal conductance in single-layer MoS 2}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep02209}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31417}, abstract = {We investigate the thermal conductivity in the armchair and zigzag MoS2 nanoribbons, by combining the non-equilibrium Green's function approach and the first-principles method. A strong orientation dependence is observed in the thermal conductivity. Particularly, the thermal conductivity for the armchair MoS2 nanoribbon is about 673.6 Wm-1 K-1 in the armchair nanoribbon, and 841.1 Wm-1 K-1 in the zigzag nanoribbon at room temperature. By calculating the Caroli transmission, we disclose the underlying mechanism for this strong orientation dependence to be the fewer phonon transport channels in the armchair MoS2 nanoribbon in the frequency range of [150, 200] cm-1. Through the scaling of the phonon dispersion, we further illustrate that the thermal conductivity calculated for the MoS2 nanoribbon is esentially in consistent with the superior thermal conductivity found for graphene.}, subject = {Mechanische Eigenschaft}, language = {en} } @article{VuBacNguyenXuanChenetal., author = {Vu-Bac, N. and Nguyen-Xuan, Hung and Chen, Lei and Lee, C.K. and Zi, Goangseup and Zhuang, Xiaoying and Liu, G.R. and Rabczuk, Timon}, title = {A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2013/978026}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170426-31676}, abstract = {This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{ZhangZhaoJiaetal., author = {Zhang, Yancheng and Zhao, Jun-Hua and Jia, Yue and Mabrouki, Tarek and Gong, Yadong and Wei, Ning and Rabczuk, Timon}, title = {An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase}, series = {Composite Structures}, journal = {Composite Structures}, pages = {261 -- 269}, abstract = {An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangRabczuk, author = {Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices}, series = {Nano Letters}, journal = {Nano Letters}, abstract = {Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWeiZhaoetal., author = {Zhang, Yancheng and Wei, Ning and Zhao, Jun-Hua and Gong, Yadong and Rabczuk, Timon}, title = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, subject = {Angewandte Mathematik}, language = {en} } @article{ValizadehNatarajanGonzalezEstradaetal., author = {Valizadeh, Navid and Natarajan, S. and Gonzalez-Estrada, O.A. and Rabczuk, Timon and Tinh Quoc, Bui and Bordas, St{\´e}phane Pierre Alain}, title = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, series = {Composite Structures}, journal = {Composite Structures}, pages = {309 -- 326}, abstract = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, subject = {Angewandte Mathematik}, language = {en} }