@article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Why twisting angles are diverse in graphene Moir'e patterns?}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Why twisting angles are diverse in graphene Moir'e patterns?}, subject = {Angewandte Mathematik}, language = {en} } @article{FaizollahzadehArdabiliNajafiAlizamiretal., author = {Faizollahzadeh Ardabili, Sina and Najafi, Bahman and Alizamir, Meysam and Mosavi, Amir and Shamshirband, Shahaboddin and Rabczuk, Timon}, title = {Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters}, series = {Energies}, journal = {Energies}, number = {11, 2889}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en11112889}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38170}, pages = {1 -- 20}, abstract = {The production of a desired product needs an effective use of the experimental model. The present study proposes an extreme learning machine (ELM) and a support vector machine (SVM) integrated with the response surface methodology (RSM) to solve the complexity in optimization and prediction of the ethyl ester and methyl ester production process. The novel hybrid models of ELM-RSM and ELM-SVM are further used as a case study to estimate the yield of methyl and ethyl esters through a trans-esterification process from waste cooking oil (WCO) based on American Society for Testing and Materials (ASTM) standards. The results of the prediction phase were also compared with artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS), which were recently developed by the second author of this study. Based on the results, an ELM with a correlation coefficient of 0.9815 and 0.9863 for methyl and ethyl esters, respectively, had a high estimation capability compared with that for SVM, ANNs, and ANFIS. Accordingly, the maximum production yield was obtained in the case of using ELM-RSM of 96.86\% for ethyl ester at a temperature of 68.48 °C, a catalyst value of 1.15 wt. \%, mixing intensity of 650.07 rpm, and an alcohol to oil molar ratio (A/O) of 5.77; for methyl ester, the production yield was 98.46\% at a temperature of 67.62 °C, a catalyst value of 1.1 wt. \%, mixing intensity of 709.42 rpm, and an A/O of 6.09. Therefore, ELM-RSM increased the production yield by 3.6\% for ethyl ester and 3.1\% for methyl ester, compared with those for the experimental data.}, subject = {Biodiesel}, language = {en} } @article{IlyaniAkmarLahmerBordasetal., author = {Ilyani Akmar, A.B. and Lahmer, Tom and Bordas, St{\´e}phane Pierre Alain and Beex, L.A.A. and Rabczuk, Timon}, title = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, series = {Composite Structures}, journal = {Composite Structures}, doi = {10.1016/j.compstruct.2014.04.014}, pages = {1 -- 17}, abstract = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiRafieeZhuangetal., author = {Ghasemi, Hamid and Rafiee, Roham and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {295 -- 305}, abstract = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangHaoWangetal., author = {Zhang, Chao and Hao, Xiao-Li and Wang, Cuixia and Wei, Ning and Rabczuk, Timon}, title = {Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep41398}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31718}, abstract = {Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16\% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @article{ZhaoLuRabczuk, author = {Zhao, Jiyun and Lu, Lixin and Rabczuk, Timon}, title = {The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {567 -- 572}, abstract = {The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers}, subject = {Angewandte Mathematik}, language = {en} } @article{BenZhaoZhangetal., author = {Ben, S. and Zhao, Jun-Hua and Zhang, Yancheng and Rabczuk, Timon}, title = {The interface strength and debonding for composite structures: review and recent developments}, series = {Composite Structures}, journal = {Composite Structures}, abstract = {The interface strength and debonding for composite structures: review and recent developments}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukBarbosa, author = {Areias, Pedro and Rabczuk, Timon and Barbosa, J.I.}, title = {The extended unsymmetric frontal solution for multiple-point constraints}, series = {Engineering Computations}, journal = {Engineering Computations}, abstract = {The extended unsymmetric frontal solution for multiple-point constraints}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoKouJiangetal., author = {Zhao, Jun-Hua and Kou, Liangzhi and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/25/29/295701}, abstract = {Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures}, subject = {Angewandte Mathematik}, language = {en} } @article{GhorashiValizadehMohammadietal., author = {Ghorashi, Seyed Shahram and Valizadeh, Navid and Mohammadi, S. and Rabczuk, Timon}, title = {T-spline based XIGA for Fracture Analysis of Orthotropic Media}, series = {Computers \& Structures}, journal = {Computers \& Structures}, pages = {138 -- 146}, abstract = {T-spline based XIGA for Fracture Analysis of Orthotropic Media}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{GhorashiRabczukRodenasGarciaetal., author = {Ghorashi, Seyed Shahram and Rabczuk, Timon and R{\´o}denas Garc{\´i}a, Juan Jos{\´e} and Lahmer, Tom}, title = {T-SPLINE BASED XIGA FOR ADAPTIVE MODELING OF CRACKED BODIES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2763}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27637}, pages = {13}, abstract = {Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme.}, subject = {Angewandte Informatik}, language = {en} } @article{JiangZhaoZhouetal., author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Zhou, K. and Rabczuk, Timon}, title = {Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4729489}, abstract = {The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green's function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm-1 K-1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young's modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85\%±0.05\% (ultimate) strain before undergoing structural phase transition into gaseous ethylene.}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhang, Yancheng and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {80 -- 95}, abstract = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} } @article{RabczukGuoZhuangetal., author = {Rabczuk, Timon and Guo, Hongwei and Zhuang, Xiaoying and Chen, Pengwan and Alajlan, Naif}, title = {Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01586-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45835}, pages = {1 -- 26}, abstract = {We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost.}, subject = {Maschinelles Lernen}, language = {en} } @article{KerfridenSchmidtRabczuketal., author = {Kerfriden, Pierre and Schmidt, K.M. and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain}, title = {Statistical extraction of process zones and representative subspaces in fracture of random composites}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Statistical extraction of process zones and representative subspaces in fracture of random composites}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiNguyenXuanNguyenThanhetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Nguyen-Thanh, Nhon and Le, T.H. and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.4282}, pages = {571 -- 603}, abstract = {This paper presents a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones.}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangZhaoRabczuk, author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Rabczuk, Timon}, title = {Size-Sensitive Young's Modulus of Kinked Silicon Nanowires}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/24/18/185702}, abstract = {We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.}, subject = {Angewandte Mathematik}, language = {en} } @article{NatarajanChakrabortyThangaveletal., author = {Natarajan, S. and Chakraborty, S. and Thangavel, M. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Size dependent free flexural vibration behavior of functionally graded nanoplates}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {74 -- 80}, abstract = {Size dependent free flexural vibration behavior of functionally graded nanoplates}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements}, series = {Structural and Multidisciplinary Optimization}, journal = {Structural and Multidisciplinary Optimization}, abstract = {Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhKiendlNguyenXuanetal., author = {Nguyen-Thanh, Nhon and Kiendl, J. and Nguyen-Xuan, Hung and W{\"u}chner, R. and Bletzinger, Kai-Uwe and Bazilevs, Yuri and Rabczuk, Timon}, title = {Rotation free isogeometric thin shell analysis using PHT-splines}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {3410 -- 3424}, abstract = {Rotation free isogeometric thin shell analysis using PHT-splines}, subject = {Angewandte Mathematik}, language = {en} } @article{BeexKerfridenRabczuketal., author = {Beex, L.A.A. and Kerfriden, Pierre and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain}, title = {Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, abstract = {Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWeiZhaoetal., author = {Zhang, Yancheng and Wei, Ning and Zhao, Jun-Hua and Gong, Yadong and Rabczuk, Timon}, title = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, subject = {Angewandte Mathematik}, language = {en} } @article{HamdiaLahmerNguyenThoietal., author = {Hamdia, Khader and Lahmer, Tom and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {304 -- 313}, abstract = {Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS}, subject = {Angewandte Mathematik}, language = {en} } @article{BanihaniRabczukAlmomani, author = {Banihani, Suleiman and Rabczuk, Timon and Almomani, Thakir}, title = {POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2013/386501}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31203}, abstract = {The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced.}, subject = {Chirurgie}, language = {en} } @article{GuoAlajlanZhuangetal., author = {Guo, Hongwei and Alajlan, Naif and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials}, series = {Computational Mechanics}, volume = {2023}, journal = {Computational Mechanics}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s00466-023-02287-x}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63666}, pages = {1 -- 12}, abstract = {We present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional functionally graded materials (FGMs) employing a Runge-Kutta discrete time scheme. Firstly, the governing equation, associated boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations are presented. Then, the deep collocation method with the Runge-Kutta integration scheme for transient analysis is introduced. The prior physics that helps to generalize the physics-informed deep learning model is introduced by constraining the temperature variable with discrete time schemes and initial/boundary conditions. Further the fitted activation functions suitable for dynamic analysis are presented. Finally, we validate our approach through several numerical examples on FGMs with irregular shapes and a variety of boundary conditions. From numerical experiments, the predicted results with PIDL demonstrate well agreement with analytical solutions and other numerical methods in predicting of both temperature and flux distributions and can be adaptive to transient analysis of FGMs with different shapes, which can be the promising surrogate model in transient dynamic analysis.}, subject = {W{\"a}rme{\"u}bergang}, language = {en} } @article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation}, subject = {Angewandte Mathematik}, language = {en} } @article{AmiriMillanShenetal., author = {Amiri, Fatemeh and Mill{\´a}n, D. and Shen, Y. and Rabczuk, Timon and Arroyo, M.}, title = {Phase-field modeling of fracture in linear thin shells}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, pages = {102 -- 109}, abstract = {Phase-field modeling of fracture in linear thin shells}, subject = {Angewandte Mathematik}, language = {en} } @article{JamshidianRabczuk, author = {Jamshidian, M. and Rabczuk, Timon}, title = {Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale}, series = {Journal of Computational Physics}, journal = {Journal of Computational Physics}, pages = {23 -- 35}, abstract = {Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale}, subject = {Angewandte Mathematik}, language = {en} } @article{ChauDinhZiLeeetal., author = {Chau-Dinh, T. and Zi, Goangseup and Lee, P.S. and Song, Jeong-Hoon and Rabczuk, Timon}, title = {Phantom-node method for shell models with arbitrary cracks}, series = {Computers \& Structures}, journal = {Computers \& Structures}, doi = {10.1016/j.compstruc.2011.10.021}, abstract = {A phantom-node method is developed for three-node shell elements to describe cracks. This method can treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Elements are overlapped on the position of the crack, and they are partially integrated to implement the discontinuous displacement across the crack. To consider the element containing a crack tip, a new kinematical relation between the overlapped elements is developed. There is no enrichment function for the discontinuous displacement field. Several numerical examples are presented to illustrate the proposed method.}, subject = {Angewandte Mathematik}, language = {en} } @article{ShiraziMohebbiAzadiKakavandetal., author = {Shirazi, A. H. N. and Mohebbi, Farzad and Azadi Kakavand, M. R. and He, B. and Rabczuk, Timon}, title = {Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation}, series = {JOURNAL OF NANOMATERIALS}, journal = {JOURNAL OF NANOMATERIALS}, doi = {10.1155/2016/2131946}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170411-31141}, abstract = {Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman's well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.}, subject = {Batterie}, language = {en} } @article{JiangZhuangRabczuk, author = {Jiang, Jin-Wu and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Orientation dependent thermal conductance in single-layer MoS 2}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep02209}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31417}, abstract = {We investigate the thermal conductivity in the armchair and zigzag MoS2 nanoribbons, by combining the non-equilibrium Green's function approach and the first-principles method. A strong orientation dependence is observed in the thermal conductivity. Particularly, the thermal conductivity for the armchair MoS2 nanoribbon is about 673.6 Wm-1 K-1 in the armchair nanoribbon, and 841.1 Wm-1 K-1 in the zigzag nanoribbon at room temperature. By calculating the Caroli transmission, we disclose the underlying mechanism for this strong orientation dependence to be the fewer phonon transport channels in the armchair MoS2 nanoribbon in the frequency range of [150, 200] cm-1. Through the scaling of the phonon dispersion, we further illustrate that the thermal conductivity calculated for the MoS2 nanoribbon is esentially in consistent with the superior thermal conductivity found for graphene.}, subject = {Mechanische Eigenschaft}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach}, series = {Structural and Multidisciplinary Optimization}, journal = {Structural and Multidisciplinary Optimization}, pages = {99 -- 112}, abstract = {Optimum _ber content and distribution in _ber-reinforced solids using a reliability and NURBS based sequential optimization approach}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {463 -- 473}, abstract = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, subject = {Angewandte Mathematik}, language = {en} } @article{BakarKramerBordasetal., author = {Bakar, I. and Kramer, O. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Optimization of Elastic Properties and Weaving Patterns of Woven Composites}, series = {Composite Structures}, journal = {Composite Structures}, pages = {575 -- 591}, abstract = {Optimization of Elastic Properties and Weaving Patterns of Woven Composites}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSamaniegoSamaniegoetal., author = {Talebi, Hossein and Samaniego, C. and Samaniego, Esteban and Rabczuk, Timon}, title = {On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.3275}, pages = {1009 -- 1027}, abstract = {Meshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass-lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node.}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniTalebiArnoldetal., author = {Silani, Mohammad and Talebi, Hossein and Arnold, Daniel and Ziaei-Rad, S. and Rabczuk, Timon}, title = {On the coupling of a commercial finite element package with lammps for multiscale modeling of materials}, series = {Steel Research International}, journal = {Steel Research International}, abstract = {On the coupling of a commercial finite element package with lammps for multiscale modeling of materials}, subject = {Angewandte Mathematik}, language = {en} } @article{ValizadehNatarajanGonzalezEstradaetal., author = {Valizadeh, Navid and Natarajan, S. and Gonzalez-Estrada, O.A. and Rabczuk, Timon and Tinh Quoc, Bui and Bordas, St{\´e}phane Pierre Alain}, title = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, series = {Composite Structures}, journal = {Composite Structures}, pages = {309 -- 326}, abstract = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, subject = {Angewandte Mathematik}, language = {en} } @article{RenZhuangOterkusetal., author = {Ren, Huilong and Zhuang, Xiaoying and Oterkus, Erkan and Zhu, Hehua and Rabczuk, Timon}, title = {Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method}, series = {Engineering with Computers}, volume = {2021}, journal = {Engineering with Computers}, doi = {10.1007/s00366-021-01502-8}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45388}, pages = {1 -- 22}, abstract = {The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.}, subject = {Bruchmechanik}, language = {en} } @article{ArashRabczukJiang, author = {Arash, Behrouz and Rabczuk, Timon and Jiang, Jin-Wu}, title = {Nanoresonators and their applications: a state of the art review}, series = {Applied Physics Reviews}, journal = {Applied Physics Reviews}, abstract = {Nanoresonators and their applications: a state of the art review}, subject = {Angewandte Mathematik}, language = {en} } @article{NooriMortazaviKeshtkarietal., author = {Noori, Hamidreza and Mortazavi, Bohayra and Keshtkari, Leila and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: a reactive molecular dynamics study}, series = {Applied Physics A}, volume = {2021}, journal = {Applied Physics A}, number = {volume 127, article 541}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s00339-021-04693-5}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44756}, pages = {1 -- 13}, abstract = {In this work, extensive reactive molecular dynamics simulations are conducted to analyze the nanopore creation by nano-particles impact over single-layer molybdenum disulfide (MoS2) with 1T and 2H phases. We also compare the results with graphene monolayer. In our simulations, nanosheets are exposed to a spherical rigid carbon projectile with high initial velocities ranging from 2 to 23 km/s. Results for three different structures are compared to examine the most critical factors in the perforation and resistance force during the impact. To analyze the perforation and impact resistance, kinetic energy and displacement time history of the projectile as well as perforation resistance force of the projectile are investigated. Interestingly, although the elasticity module and tensile strength of the graphene are by almost five times higher than those of MoS2, the results demonstrate that 1T and 2H-MoS2 phases are more resistive to the impact loading and perforation than graphene. For the MoS2nanosheets, we realize that the 2H phase is more resistant to impact loading than the 1T counterpart. Our reactive molecular dynamics results highlight that in addition to the strength and toughness, atomic structure is another crucial factor that can contribute substantially to impact resistance of 2D materials. The obtained results can be useful to guide the experimental setups for the nanopore creation in MoS2or other 2D lattices.}, subject = {Nanomechanik}, language = {en} } @article{MortazaviRabczuk, author = {Mortazavi, Bohayra and Rabczuk, Timon}, title = {Multiscale modeling of heat conduction in graphene laminates}, series = {Carbon}, journal = {Carbon}, pages = {1 -- 7}, abstract = {Multiscale modeling of heat conduction in graphene laminates}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{IlyaniAkmarKramerRabczuk, author = {Ilyani Akmar, A.B. and Kramer, O. and Rabczuk, Timon}, title = {Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy}, series = {American Journal of Engineering and Applied Sciences}, journal = {American Journal of Engineering and Applied Sciences}, doi = {10.3844/ajeassp.2015.185.201}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31402}, pages = {185 -- 201}, abstract = {In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases.}, subject = {Optimierung}, language = {en} } @article{JiangParkRabczuk, author = {Jiang, Jin-Wu and Park, Harold S. and Rabczuk, Timon}, title = {MoS2 nanoresonators: intrinsically better than graphene?}, series = {Nanoscale}, journal = {Nanoscale}, pages = {3618 -- 3625}, abstract = {MoS2 nanoresonators: intrinsically better than graphene?}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniBordasetal., author = {Talebi, Hossein and Silani, Mohammad and Bordas, St{\´e}phane Pierre Alain and Kerfriden, Pierre and Rabczuk, Timon}, title = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangRabczuk, author = {Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices}, series = {Nano Letters}, journal = {Nano Letters}, abstract = {Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices}, subject = {Angewandte Mathematik}, language = {en} } @article{MortazaviPereiraJiangetal., author = {Mortazavi, Bohayra and Pereira, Luiz Felipe C. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modelling heat conduction in polycrystalline hexagonal boron-nitride films}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep13228}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31534}, abstract = {We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} }