@article{MeyerKohlstockHauptHeldtetal., author = {Meyer-Kohlstock, Daniel and Haupt, Thomas and Heldt, Erik and Heldt, Nils and Kraft, Eckhard}, title = {Biochar as Additive in Biogas-Production from Bio-Waste}, series = {ENERGIES}, journal = {ENERGIES}, doi = {10.3390/en9040247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170406-31119}, abstract = {Previous publications about biochar in anaerobic digestion show encouraging results with regard to increased biogas yields. This work investigates such effects in a solid-state fermentation of bio-waste. Unlike in previous trials, the influence of biochar is tested with a setup that simulates an industrial-scale biogas plant. Both the biogas and the methane yield increased around 5\% with a biochar addition of 5\%-based on organic dry matter biochar to bio-waste. An addition of 10\% increased the yield by around 3\%. While scaling effects prohibit a simple transfer of the results to industrial-scale plants, and although the certainty of the results is reduced by the heterogeneity of the bio-waste, further research in this direction seems promising.}, subject = {Festphasen-Fermentation}, language = {en} } @article{PollackLueckWolfetal., author = {Pollack, Moritz and L{\"u}ck, Andrea and Wolf, Mario and Kraft, Eckhard and V{\"o}lker, Conrad}, title = {Energy and Business Synergy: Leveraging Biogenic Resources from Agriculture, Waste, and Wastewater in German Rural Areas}, series = {Sustainability}, volume = {2023}, journal = {Sustainability}, number = {volume 15, issue 24, article 16573}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/su152416573}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20231222-65172}, pages = {1 -- 25}, abstract = {The imperative to transform current energy provisions is widely acknowledged. However, scant attention has hitherto been directed toward rural municipalities and their innate resources, notably biogenic resources. In this paper, a methodological framework is developed to interconnect resources from waste, wastewater, and agricultural domains for energy utilization. This entails cataloging existing resources, delineating their potential via quantitative assessments utilizing diverse technologies, and encapsulating them in a conceptual model. The formulated models underwent iterative evaluation with engagement from diverse stakeholders. Consequently, 3 main concepts, complemented by 72 sub-concepts, were delineated, all fostering positive contributions to climate protection and providing heat supply in the rural study area. The outcomes' replicability is underscored by the study area's generic structure and the employed methodology. Through these inquiries, a framework for the requisite energy transition, with a pronounced emphasis on the coupling of waste, wastewater, and agriculture sectors in rural environments, is robustly analyzed.}, subject = {Energiewende}, language = {en} } @article{SchmitzKraft, author = {Schmitz, Tonia and Kraft, Eckhard}, title = {Pilot scale photobioreactor system for land-based macroalgae cultivation}, series = {Journal of Applied Phycology}, volume = {2021}, journal = {Journal of Applied Phycology}, doi = {10.1007/s10811-021-02617-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45401}, pages = {1 -- 10}, abstract = {Marine macroalgae such as Ulva intestinalis have promising properties as feedstock for cosmetics and pharmaceuticals. However, since the quantity and quality of naturally grown algae vary widely, their exploitability is reduced - especially for producers in high-priced markets. Moreover, the expansion of marine or shore-based cultivation systems is unlikely in Europe, since promising sites either lie in fishing zones, recreational areas, or natural reserves. The aim was therefore to develop a closed photobioreactor system enabling full control of abiotic environmental parameters and an effective reconditioning of the cultivation medium in order to produce marine macroalgae at sites distant from the shore. To assess the feasibility and functionality of the chosen technological concept, a prototypal plant has been implemented in central Germany - a site distant from the sea. Using a newly developed, submersible LED light source, cultivation experiments with Ulva intestinalis led to growth rates of 7.72 ± 0.04 \% day-1 in a cultivation cycle of 28 days. Based on the space demand of the production system, this results in fresh mass productivity of 3.0 kg m-2, respectively, of 1.1 kg m-2 per year. Also considering the ratio of biomass to energy input amounting to 2.76 g kWh-1, significant future improvements of the developed photobioreactor system should include the optimization of growth parameters, and the reduction of the system's overall energy demand.}, subject = {Makroalgen}, language = {en} } @article{SchwenkeSoebkeKraft, author = {Schwenke, Nicolas and S{\"o}bke, Heinrich and Kraft, Eckhard}, title = {Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography}, series = {Trends in Higher Education}, volume = {2023}, journal = {Trends in Higher Education}, number = {Volume 2, issue 4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/higheredu2040037}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20231207-65016}, pages = {611 -- 635}, abstract = {The release of the large language model-based chatbot ChatGPT 3.5 in November 2022 has brought considerable attention to the subject of artificial intelligence, not only to the public. From the perspective of higher education, ChatGPT challenges various learning and assessment formats as it significantly reduces the effectiveness of their learning and assessment functionalities. In particular, ChatGPT might be applied to formats that require learners to generate text, such as bachelor theses or student research papers. Accordingly, the research question arises to what extent writing of bachelor theses is still a valid learning and assessment format. Correspondingly, in this exploratory study, the first author was asked to write his bachelor's thesis exploiting ChatGPT. For tracing the impact of ChatGPT methodically, an autoethnographic approach was used. First, all considerations on the potential use of ChatGPT were documented in logs, and second, all ChatGPT chats were logged. Both logs and chat histories were analyzed and are presented along with the recommendations for students regarding the use of ChatGPT suggested by a common framework. In conclusion, ChatGPT is beneficial for thesis writing during various activities, such as brainstorming, structuring, and text revision. However, there are limitations that arise, e.g., in referencing. Thus, ChatGPT requires continuous validation of the outcomes generated and thus fosters learning. Currently, ChatGPT is valued as a beneficial tool in thesis writing. However, writing a conclusive thesis still requires the learner's meaningful engagement. Accordingly, writing a thesis is still a valid learning and assessment format. With further releases of ChatGPT, an increase in capabilities is to be expected, and the research question needs to be reevaluated from time to time.}, subject = {Chatbot}, language = {en} }