@article{ZhuangHuangRabczuketal., author = {Zhuang, Xiaoying and Huang, Runqiu and Rabczuk, Timon and Liang, C.}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, abstract = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhuangHuangLiangetal., author = {Zhuang, Xiaoying and Huang, Runqiu and Liang, Chao and Rabczuk, Timon}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2014/179169}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31726}, abstract = {Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.}, subject = {Energiespeicherung}, language = {en} } @article{ZhaoWeiFanetal., author = {Zhao, Jun-Hua and Wei, Ning and Fan, Z. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical properties of three types of carbon allotropes}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Mechanical properties of three types of carbon allotropes}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWangJiangetal., author = {Zhao, Jun-Hua and Wang, L. and Jiang, Jin-Wu and Wang, Z. and Guo, Wanlin and Rabczuk, Timon}, title = {A comparative study of two molecular mechanics models based on harmonic potentials}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {A comparative study of two molecular mechanics models based on harmonic potentials}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoLuZhangetal., author = {Zhao, Jun-Hua and Lu, Lixin and Zhang, Zhiliang and Guo, Wanlin and Rabczuk, Timon}, title = {Continuum modeling of the cohesive energy for the interfaces between _lms, spheres, coats and substrates}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {432 -- 438}, abstract = {Continuum modeling of the cohesive energy for the interfaces between _lms, spheres, coats and substrates}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoLuRabczuk, author = {Zhao, Jun-Hua and Lu, Lixin and Rabczuk, Timon}, title = {Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines}, series = {The Journal of Chemical Physics}, journal = {The Journal of Chemical Physics}, doi = {10.1063/1.4878115}, abstract = {Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoKouJiangetal., author = {Zhao, Jun-Hua and Kou, Liangzhi and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures}, series = {Nanotechnology}, journal = {Nanotechnology}, doi = {10.1088/0957-4484/25/29/295701}, abstract = {Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiangJiaetal., author = {Zhao, Jun-Hua and Jiang, Jin-Wu and Jia, Yue and Guo, Wanlin and Rabczuk, Timon}, title = {A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates}, series = {Carbon}, journal = {Carbon}, doi = {10.1016/j.carbon.2013.01.041}, pages = {108 -- 119}, abstract = {Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiaWeietal., author = {Zhao, Jun-Hua and Jia, Yue and Wei, Ning and Rabczuk, Timon}, title = {Binding energy and mechanical stability of two parallel and crossing carbon nanotubes}, series = {Journal of Applied Mechanics}, journal = {Journal of Applied Mechanics}, abstract = {Binding energy and mechanical stability of two parallel and crossing carbon nanotubes}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoGuoRabczuk, author = {Zhao, Jun-Hua and Guo, Wanlin and Rabczuk, Timon}, title = {An analytical molecular mechanics model for the elastic properties of crystalline polyethylene}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4745035}, abstract = {We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoLuRabczuk, author = {Zhao, Jiyun and Lu, Lixin and Rabczuk, Timon}, title = {The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {567 -- 572}, abstract = {The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiangWangetal., author = {Zhao, Jiyun and Jiang, Jin-Wu and Wang, L. and Guo, Wanlin and Rabczuk, Timon}, title = {Coarse-grained potentials of single-walled carbon nanotubes}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, abstract = {Coarse-grained potentials of single-walled carbon nanotubes}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhuangMuthuetal., author = {Zhang, Yancheng and Zhuang, Xiaoying and Muthu, Jacob and Mabrouki, Tarek and Fontaine, Micha{\"e}l and Gong, Yadong and Rabczuk, Timon}, title = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {27 -- 33}, abstract = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhaoJiaetal., author = {Zhang, Yancheng and Zhao, Jun-Hua and Jia, Yue and Mabrouki, Tarek and Gong, Yadong and Wei, Ning and Rabczuk, Timon}, title = {An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase}, series = {Composite Structures}, journal = {Composite Structures}, pages = {261 -- 269}, abstract = {An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhaoWeietal., author = {Zhang, Yancheng and Zhao, Jiyun and Wei, Ning and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {1714 -- 1721}, abstract = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWeiZhaoetal., author = {Zhang, Yancheng and Wei, Ning and Zhao, Jun-Hua and Gong, Yadong and Rabczuk, Timon}, title = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWangLahmeretal., author = {Zhang, Chao and Wang, Cuixia and Lahmer, Tom and He, Pengfei and Rabczuk, Timon}, title = {A dynamic XFEM formulation for crack identification}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, pages = {427 -- 448}, abstract = {A dynamic XFEM formulation for crack identification}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangHaoWangetal., author = {Zhang, Chao and Hao, Xiao-Li and Wang, Cuixia and Wei, Ning and Rabczuk, Timon}, title = {Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep41398}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31718}, abstract = {Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16\% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @article{YangBudarapuMahapatraetal., author = {Yang, Shih-Wei and Budarapu, Pattabhi Ramaiah and Mahapatra, D.R. and Bordas, St{\´e}phane Pierre Alain and Zi, Goangseup and Rabczuk, Timon}, title = {A Meshless Adaptive Multiscale Method for Fracture}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {382 -- 395}, abstract = {A Meshless Adaptive Multiscale Method for Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{XuMourrainGalligoetal., author = {Xu, G. and Mourrain, B. and Galligo, A. and Rabczuk, Timon}, title = {High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods}, series = {Computational Mechanics}, journal = {Computational Mechanics}, abstract = {High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacSilaniLahmeretal., author = {Vu-Bac, N. and Silani, Mohammad and Lahmer, Tom and Zhuang, Xiaoying and Rabczuk, Timon}, title = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {520 -- 535}, abstract = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacNguyenXuanChenetal., author = {Vu-Bac, N. and Nguyen-Xuan, Hung and Chen, Lei and Lee, C.K. and Zi, Goangseup and Zhuang, Xiaoying and Liu, G.R. and Rabczuk, Timon}, title = {A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2013/978026}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170426-31676}, abstract = {This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{VuBacLahmerZhuangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhuang, Xiaoying and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {19 -- 31}, abstract = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhang, Yancheng and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {80 -- 95}, abstract = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} } @article{ValizadehNatarajanGonzalezEstradaetal., author = {Valizadeh, Navid and Natarajan, S. and Gonzalez-Estrada, O.A. and Rabczuk, Timon and Tinh Quoc, Bui and Bordas, St{\´e}phane Pierre Alain}, title = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, series = {Composite Structures}, journal = {Composite Structures}, pages = {309 -- 326}, abstract = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiNguyenXuanNguyenThanhetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Nguyen-Thanh, Nhon and Le, T.H. and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.4282}, pages = {571 -- 603}, abstract = {This paper presents a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones.}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiNguyenXuanBordasetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Bordas, St{\´e}phane Pierre Alain and Nguyen-Thanh, Nhon and Rabczuk, Timon}, title = {Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory}, series = {Mechanics of Advanced Materials and Structures}, journal = {Mechanics of Advanced Materials and Structures}, pages = {451 -- 469}, abstract = {Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiFerreiraBordasetal., author = {Thai, Chien H. and Ferreira, A.J.M. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon and Nguyen-Xuan, Hung}, title = {Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory}, series = {European Journal of Mechanics}, journal = {European Journal of Mechanics}, pages = {89 -- 108}, abstract = {Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiZiSilanietal., author = {Talebi, Hossein and Zi, Goangseup and Silani, Mohammad and Samaniego, Esteban and Rabczuk, Timon}, title = {A simple circular cell method for multilevel finite element analysis}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2012/526846}, abstract = {A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiZiSilanietal., author = {Talebi, Hossein and Zi, Goangseup and Silani, Mohammad and Samaniego, Esteban and Rabczuk, Timon}, title = {A simple circular cell method for multilevel finite element analysis}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2012/526846}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170426-31639}, abstract = {A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{TalebiSilaniRabczuk, author = {Talebi, Hossein and Silani, Mohammad and Rabczuk, Timon}, title = {Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {82 -- 92}, abstract = {Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniBordasetal., author = {Talebi, Hossein and Silani, Mohammad and Bordas, St{\´e}phane Pierre Alain and Kerfriden, Pierre and Rabczuk, Timon}, title = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniBordasetal., author = {Talebi, Hossein and Silani, Mohammad and Bordas, St{\´e}phane Pierre Alain and Kerfriden, Pierre and Rabczuk, Timon}, title = {A computational library for multiscale modeling of material failure}, series = {Computational Mechanics}, journal = {Computational Mechanics}, abstract = {A computational library for multiscale modeling of material failure}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSamaniegoSamaniegoetal., author = {Talebi, Hossein and Samaniego, C. and Samaniego, Esteban and Rabczuk, Timon}, title = {On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.3275}, pages = {1009 -- 1027}, abstract = {Meshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass-lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node.}, subject = {Angewandte Mathematik}, language = {en} } @article{SimpsonBordasTrevelyanetal., author = {Simpson, R. and Bordas, St{\´e}phane Pierre Alain and Trevelyan, J. and Kerfriden, Pierre and Rabczuk, Timon}, title = {An Isogeometric Boundary Element Method for elastostatic analysis}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, doi = {10.1016/j.cma.2011.08.008}, abstract = {The concept of isogeometric analysis, where functions that are used to describe geometry in CAD software are used to approximate the unknown fields in numerical simulations, has received great attention in recent years. The method has the potential to have profound impact on engineering design, since the task of meshing, which in some cases can add significant overhead, has been circumvented. Much of the research effort has been focused on finite element implementations of the isogeometric concept, but at present, little has been seen on the application to the Boundary Element Method. The current paper proposes an Isogeometric Boundary Element Method (BEM), which we term IGABEM, applied to two-dimensional elastostatic problems using Non-Uniform Rational B-Splines (NURBS). We find it is a natural fit with the isogeometric concept since both the NURBS approximation and BEM deal with quantities entirely on the boundary. The method is verified against analytical solutions where it is seen that superior accuracies are achieved over a conventional quadratic isoparametric BEM implementation.}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniZiaeiRadTalebietal., author = {Silani, Mohammad and Ziaei-Rad, S. and Talebi, Hossein and Rabczuk, Timon}, title = {A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, abstract = {A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniTalebiZiaeiRadetal., author = {Silani, Mohammad and Talebi, Hossein and Ziaei-Rad, S. and Hamouda, A.M.S. and Zi, Goangseup and Rabczuk, Timon}, title = {A three dimensional Extended Arlequin Method for Dynamic Fracture}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {425 -- 431}, abstract = {A three dimensional Extended Arlequin Method for Dynamic Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniTalebiArnoldetal., author = {Silani, Mohammad and Talebi, Hossein and Arnold, Daniel and Ziaei-Rad, S. and Rabczuk, Timon}, title = {On the coupling of a commercial finite element package with lammps for multiscale modeling of materials}, series = {Steel Research International}, journal = {Steel Research International}, abstract = {On the coupling of a commercial finite element package with lammps for multiscale modeling of materials}, subject = {Angewandte Mathematik}, language = {en} } @article{ShiraziMohebbiAzadiKakavandetal., author = {Shirazi, A. H. N. and Mohebbi, Farzad and Azadi Kakavand, M. R. and He, B. and Rabczuk, Timon}, title = {Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation}, series = {JOURNAL OF NANOMATERIALS}, journal = {JOURNAL OF NANOMATERIALS}, doi = {10.1155/2016/2131946}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170411-31141}, abstract = {Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman's well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.}, subject = {Batterie}, language = {en} } @article{RenZhuangOterkusetal., author = {Ren, Huilong and Zhuang, Xiaoying and Oterkus, Erkan and Zhu, Hehua and Rabczuk, Timon}, title = {Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method}, series = {Engineering with Computers}, volume = {2021}, journal = {Engineering with Computers}, doi = {10.1007/s00366-021-01502-8}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45388}, pages = {1 -- 22}, abstract = {The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.}, subject = {Bruchmechanik}, language = {en} } @article{RafieeRabczukMilanietal., author = {Rafiee, Roham and Rabczuk, Timon and Milani, Abbas S. and Tserpes, Konstantinos I.}, title = {Advances in Characterization and Modeling of Nanoreinforced Composites}, series = {JOURNAL OF NANOMATERIALS}, journal = {JOURNAL OF NANOMATERIALS}, doi = {10.1155/2016/9481053}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170411-31134}, abstract = {This special issue deals with a range of recently developed characterization and modeling techniques employed to better understand and predict the response of nanoreinforced composites at different scales.}, subject = {Physikalische Eigenschaft}, language = {en} } @article{RabizadehSaboorBagherzadehRabczuk, author = {Rabizadeh, Ehsan and Saboor Bagherzadeh, Amir and Rabczuk, Timon}, title = {Application of goal-oriented error estimation and adaptive mesh refinement on thermo-mechanical multifield problems}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {27 -- 44}, abstract = {Application of goal-oriented error estimation and adaptive mesh re_nement on thermo-mechanical multi_eld problems}, subject = {Angewandte Mathematik}, language = {en} } @article{RabczukZhuangOterkus, author = {Rabczuk, Timon and Zhuang, Xiaoying and Oterkus, Erkan}, title = {Editorial: Computational modeling based on nonlocal theory}, series = {Engineering with Computers}, volume = {2023}, journal = {Engineering with Computers}, number = {Volume 39, issue 3}, publisher = {Springer}, address = {London}, doi = {https://doi.org/10.1007/s00366-022-01775-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63658}, pages = {1}, abstract = {Nonlocal theories concern the interaction of objects, which are separated in space. Classical examples are Coulomb's law or Newton's law of universal gravitation. They had signficiant impact in physics and engineering. One classical application in mechanics is the failure of quasi-brittle materials. While local models lead to an ill-posed boundary value problem and associated mesh dependent results, nonlocal models guarantee the well-posedness and are furthermore relatively easy to implement into commercial computational software.}, subject = {Computersimulation}, language = {en} } @article{RabczukGuoZhuangetal., author = {Rabczuk, Timon and Guo, Hongwei and Zhuang, Xiaoying and Chen, Pengwan and Alajlan, Naif}, title = {Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01586-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45835}, pages = {1 -- 26}, abstract = {We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost.}, subject = {Maschinelles Lernen}, language = {en} } @article{PhanDaoNguyenXuanThaiHoangetal., author = {Phan-Dao, H. and Nguyen-Xuan, Hung and Thai-Hoang, C. and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {An edge-based smoothed finite element method for analysis of laminated composite plates}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {An edge-based smoothed finite element method for analysis of laminated composite plates}, subject = {Angewandte Mathematik}, language = {en} } @article{NooriMortazaviKeshtkarietal., author = {Noori, Hamidreza and Mortazavi, Bohayra and Keshtkari, Leila and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: a reactive molecular dynamics study}, series = {Applied Physics A}, volume = {2021}, journal = {Applied Physics A}, number = {volume 127, article 541}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s00339-021-04693-5}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44756}, pages = {1 -- 13}, abstract = {In this work, extensive reactive molecular dynamics simulations are conducted to analyze the nanopore creation by nano-particles impact over single-layer molybdenum disulfide (MoS2) with 1T and 2H phases. We also compare the results with graphene monolayer. In our simulations, nanosheets are exposed to a spherical rigid carbon projectile with high initial velocities ranging from 2 to 23 km/s. Results for three different structures are compared to examine the most critical factors in the perforation and resistance force during the impact. To analyze the perforation and impact resistance, kinetic energy and displacement time history of the projectile as well as perforation resistance force of the projectile are investigated. Interestingly, although the elasticity module and tensile strength of the graphene are by almost five times higher than those of MoS2, the results demonstrate that 1T and 2H-MoS2 phases are more resistive to the impact loading and perforation than graphene. For the MoS2nanosheets, we realize that the 2H phase is more resistant to impact loading than the 1T counterpart. Our reactive molecular dynamics results highlight that in addition to the strength and toughness, atomic structure is another crucial factor that can contribute substantially to impact resistance of 2D materials. The obtained results can be useful to guide the experimental setups for the nanopore creation in MoS2or other 2D lattices.}, subject = {Nanomechanik}, language = {en} } @article{NguyenXuanRabczukNguyenThoietal., author = {Nguyen-Xuan, Hung and Rabczuk, Timon and Nguyen-Thoi, T. and Tran, T. and Nguyen-Thanh, Nhon}, title = {Computation of limit and shakedown loads using a node-based smoothed finite element method}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.3317}, pages = {287 -- 310}, abstract = {This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal-dual algorithm. An associated primal-dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal-dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods.}, subject = {Angewandte Mathematik}, language = {en} }