@inproceedings{ChangwanHaasCaldas2004, author = {Changwan, Kim and Haas, Carl and Caldas, Carlos}, title = {Spatial data acquisition, integration, and modeling for real-time project life-cycle applications}, doi = {10.25643/bauhaus-universitaet.128}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1280}, year = {2004}, abstract = {Current methods for site modeling employs expensive laser range scanners that produce dense point clouds which require hours or days of post-processing to arrive at a finished model. While these methods produce very detailed models of the scanned scene, useful for obtaining as-built drawings of existing structures, the associated computational time burden precludes the methods from being used onsite for real-time decision-making. Moreover, in many project life-cycle applications, detailed models of objects are not needed. Results of earlier research conducted by the authors demonstrated novel, highly economical methods that reduce data acquisition time and the need for computationally intensive processing. These methods enable complete local area modeling in the order of a minute, and with sufficient accuracy for applications such as advanced equipment control, simple as-built site modeling, and real-time safety monitoring for construction equipment. This paper describes a research project that is investigating novel ways of acquiring, integrating, modeling, and analyzing project site spatial data that do not rely on dense, expensive laser scanning technology and that enable scalability and robustness for real-time, field deployment. Algorithms and methods for modeling objects of simple geometric shape (geometric primitives from a limited number of range points, as well as methods provide a foundation for further development required to address more complex site situations, especially if dynamic site information (motion of personnel and equipment). Field experiments are being conducted to establish performance parameters and validation for the proposed methods and models. Initial experimental work has demonstrated the feasibility of this approach.}, subject = {Bauwerk}, language = {en} } @inproceedings{PetzoldDonath2004, author = {Petzold, Frank and Donath, Dirk}, title = {The building as a container of information : the starting point for project development and design formulation}, doi = {10.25643/bauhaus-universitaet.184}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1848}, year = {2004}, abstract = {For planning in existing built contexts, the building survey is the starting point for initial planning proposals, for the diagnosis and documentation of building damages, for the creation of objectives catalogues, for the detailed design of renovation and conversion measures and for ensuring fulfilment of building legislation, particularly by change of use and refitting. An examination of currently available IT-tools shows insufficient support for planning within existing contexts, most notably a deficit with regard to information capture and administration. This paper discusses the concept for a modular surveying system (basic concept, separation of geometry from semantic data, and separation into sub-systems) and the prototypical realisation of a system for the complete support of the entire building surveying process for existing buildings. The project aims to contribute to the development of a planning system for existing buildings. ...}, subject = {Architektur}, language = {en} } @article{AbrahamczykUzair, author = {Abrahamczyk, Lars and Uzair, Aanis}, title = {On the use of climate models for estimating the non-stationary characteristic values of climatic actions in civil engineering practice}, series = {Frontiers in Built Environment}, volume = {2023}, journal = {Frontiers in Built Environment}, number = {volume 9, article 1108328}, publisher = {Frontier Media}, address = {Lausanne}, doi = {10.3389/fbuil.2023.1108328}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230524-63751}, pages = {1 -- 9}, abstract = {The characteristic values of climatic actions in current structural design codes are based on a specified probability of exceedance during the design working life of a structure. These values are traditionally determined from the past observation data under a stationary climate assumption. However, this assumption becomes invalid in the context of climate change, where the frequency and intensity of climatic extremes varies with respect to time. This paper presents a methodology to calculate the non-stationary characteristic values using state of the art climate model projections. The non-stationary characteristic values are calculated in compliance with the requirements of structural design codes by forming quasi-stationary windows of the entire bias-corrected climate model data. Three approaches for the calculation of non-stationary characteristic values considering the design working life of a structure are compared and their consequences on exceedance probability are discussed.}, subject = {Klima{\"a}nderung}, language = {en} }