@phdthesis{Link, author = {Link, Tim}, title = {Entwicklung und Untersuchung von alternativen Dicalciumsilicat-Bindern auf der Basis von alpha-C2SH}, doi = {10.25643/bauhaus-universitaet.3722}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180205-37228}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {292}, abstract = {Um den Klimawandel zu begrenzen, m{\"u}ssen die CO2-Emissionen drastisch gesenkt werden [100]. Bis 2050 soll bei der Herstellung von Zement eine Einsparung um 51-60 \% auf 0,425-0,350 tCO2/tZement erfolgen [7]. Um dieses Ziel zu erreichen, sind alternative Bindemittelkonzepte notwendig [70]. Diese Arbeit widmet sich alternativen, hochreaktiven Dicalciumsilicat-Bindemitteln, die durch die thermische Aktivierung von α-Dicalcium-Silicat-Hydrat (α-C2SH) erzeugt werden. Das α-C2SH ist eine kristalline C S H-Phase, die im hydrothermalen Prozess, beispielsweise aus Branntkalk und Quarz, herstellbar ist. Die thermische Aktivierung kann bei sehr niedrigen Temperaturen erfolgen (>420 °C) und f{\"u}hrt zu einem Multiphasen-C2S-Binder. Als besonders reaktive Bestandteile k{\"o}nnen x-C2S und r{\"o}ntgenamorphe Anteile enthalten sein. Weiterhin k{\"o}nnen β C2S, γ C2S und Dellait (Ca6(SiO4)(Si2O7)(OH)2) entstehen. Im Rahmen der Arbeit wird zun{\"a}chst der Stand des Wissens zur Polymorphie und Hydratation von C2S zusammengefasst. Es werden bekannte C2S-basierte Bindemittelkonzepte vorgestellt und bewertet. Die Herstellung von C2S-Bindern wird experimentell im Labormaßstab untersucht. Dabei kommen unterschiedliche Autoklaven und ein Muffelofen zum Einsatz. Die Herstellungsparameter werden hinsichtlich Phasenbestand und Reaktivit{\"a}t optimiert. Die Bindemittel werden durch quantitative R{\"o}ntgen-Phasenanalyse (QXRD), Rasterelektronenmikroskopie (REM), N2-Adsorption (BET-Methode), Heliumpycnometer, Thermoanalyse (TGA/DSC) und 29Si-MAS- sowie 29Si-1H-CP/MAS-NMR-Spektroskopie charakterisiert. Das Hydratationsverhalten der Bindemittel wird vorrangig mithilfe von W{\"a}rmeflusskalorimetrie untersucht. Weiterhin werden in situ und ex situ XRD-, TGA/DSC- und REM-Untersuchungen durchgef{\"u}hrt. Anhand von zwei Bindemitteln wird die F{\"a}higkeit zur Erzielung hoher Festigkeiten demonstriert. Abschließend erfolgt eine Absch{\"a}tzung zu Energiebedarf und CO2-Emissionen f{\"u}r die Herstellung der untersuchten C2S-Binder. Die Ergebnisse zeigen, dass f{\"u}r eine hohe Reaktivit{\"a}t der Binder eine niedrige Brenntemperatur und ein geringer Wasserdampfpartialdruck w{\"a}hrend der thermischen Aktivierung entscheidend sind. Weiterhin muss das hydrothermal hergestellte α-C2SH eine m{\"o}glichst hohe spezifische Oberfl{\"a}che aufweisen. Diese Parameter beeinflussen den Phasenbestand und die phasenspezifische Reaktivit{\"a}t. Brenntemperaturen von ca. 420-500 °C f{\"u}hren zu hochreaktiven Bindern, die im Rahmen dieser Arbeit als Niedertemperatur-C2S-Binder bezeichnet werden. Temperaturen von ca. 600-800 °C f{\"u}hren zu Bindern mit geringerer Reaktivit{\"a}t, die im Rahmen dieser Arbeit als Hochtemperatur-C2S bezeichnet werden. H{\"o}here Brenntemperaturen (1000 °C) f{\"u}hren zu Bindemitteln, die innerhalb der ersten drei Tage keine hydraulische Aktivit{\"a}t zeigen. Die untersuchten Bindemittel k{\"o}nnen sehr hohe Reaktionsgeschwindigkeiten erreichen. Die W{\"a}rmeflusskalorimetrie deutet bei einigen Bindemitteln einen nahezu vollst{\"a}ndigen Umsatz innerhalb von drei Tagen an. Durch XRD wurde f{\"u}r einen Binder der vollst{\"a}ndige Verbrauch von x-C2S innerhalb von drei Tagen nachgewiesen. F{\"u}r einen mittels in-situ-XRD und W{\"a}rmeflusskalorimetrie untersuchten Binder wurde gezeigt, dass die Phasen vorrangig in der Reihenfolge r{\"o}ntgenamorph > x-C2S > β-C2S > γ-C2S hydratisieren. Hydratationsprodukte sind nadelige C S H-Phasen und Portlandit. Die Herstellung durch thermische Aktivierung von α-C2SH f{\"u}hrt zu tafeligen Bindemittelpartikeln, die teilweise Zwickelr{\"a}ume und Poren zwischen den einzelnen Partikeln einschließen. Um eine verarbeitbare Bindemittelpaste zu erzeugen, sind daher sehr hohe Wasser/Bindemittel-Werte (z. B. 1,4) erforderlich. Der Wasseranspruch kann durch Mahlung etwa auf das Niveau von Zement gesenkt werden. Die Druckfestigkeitsentwicklung wurde an zwei Niedertemperatur-C2S-Kompositbindern mit 40 \% Kalksteinmehl bzw. 40 \% H{\"u}ttensand untersucht. Aufgrund von theoretischen Betrachtungen zur Porosit{\"a}t in Abh{\"a}ngigkeit des w/b-Wertes wurde dieser auf 0,3 festgelegt. Durch Zugabe von PCE-Fließmittel wurde ein verarbeitbarer M{\"o}rtel erhalten. Die Festigkeitsentwicklung ist sehr schnell. Der Kalksteinmehl-Binder erreichte nach zwei Tagen 46 N/mm². Bis Tag 28 trat keine weitere Festigkeitssteigerung ein. Der H{\"u}ttensand-Binder erreichte nach zwei Tagen 62 N/mm². Durch die H{\"u}ttensandreaktion stieg die Festigkeit bis auf 85 N/mm² nach 28 Tagen an. F{\"u}r den Herstellungsprozess von Niedertemperatur-C2S-Binder wurden Energieverbr{\"a}uche und CO2-Emissionen abgesch{\"a}tzt. Es deutet sich an, dass, bezogen auf die Bindemittelmenge, keine wesentlichen Einsparungen im Vergleich zur Portlandzementherstellung m{\"o}glich sind. F{\"u}r die tats{\"a}chlichen Emissionen muss jedoch zus{\"a}tzlich die Leistungsf{\"a}higkeit der Bindemittel ber{\"u}cksichtigt werden. Die Leistungsf{\"a}higkeit kann als erforderliche Bindemittelmenge betrachtet werden, die je m³ Beton eingesetzt werden muss, um bestimmte Festigkeits-, Dauerhaftigkeits- und Verarbeitungseigenschaften zu erreichen. Aus verschiedenen Ver{\"o}ffentlichungen [94, 201, 206] wurde die These abgeleitet, dass die Leistungsf{\"a}higkeit eines Bindemittels maßgeblich von der C-S-H-Menge bestimmt wird, die w{\"a}hrend der Hydratation gebildet wird. Daher wird f{\"u}r NT-C2S-Binder eine außergew{\"o}hnlich hohe Leistungsf{\"a}higkeit erwartet. Auf Basis der Leistungsf{\"a}higkeitsthese verringern sich die abgesch{\"a}tzten CO2-Emissionen von NT-C2S-Bindern, sodass gegen{\"u}ber Portlandzement ein m{\"o}gliches Einsparpotenzial von 42 \% ermittelt wurde.}, subject = {Belit}, language = {de} } @phdthesis{Ehrhardt, author = {Ehrhardt, Dirk}, title = {ZUM EINFLUSS DER NACHBEHANDLUNG AUF DIE GEF{\"U}GEAUSBILDUNG UND DEN FROST-TAUMITTELWIDERSTAND DER BETONRANDZONE}, doi = {10.25643/bauhaus-universitaet.3688}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20171120-36889}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {235}, abstract = {Die Festigkeitsentwicklung des Zementbetons basiert auf der chemischen Reaktion des Zementes mit dem Anmachwasser. Durch Nachbehandlungsmaßnahmen muss daf{\"u}r gesorgt werden, dass dem Zement gen{\"u}gend Wasser f{\"u}r seine Reaktion zur Verf{\"u}gung steht, da sonst ein Beton mit minderer Qualit{\"a}t entsteht. Die vorliegende Arbeit behandelt die grunds{\"a}tzlichen Fragen der Betonnachbehandlung bei Anwendung von Straßenbetonen. Im Speziellen wird die Frage des erforderlichen Nachbehandlungsbedarfs von h{\"u}ttensandhaltigen Kompositzementen betrachtet. Die Wirkung der Nachbehandlung wird anhand des erreichten Frost-Tausalz-Widerstandes und der Gef{\"u}geausbildung in der unmittelbaren Betonrandzone bewertet. Der Fokus der Untersuchungen lag auf abgezogenen Betonoberfl{\"a}chen. Es wurde ein Modell zur Austrocknung des jungen Betons erarbeitet. Es konnte gezeigt werden, dass in einer fr{\"u}hen Austrocknung (Kapillarphase) keine kritische Austrocknung der Betonrandzone einsetzt, sondern der Beton ann{\"a}hrend gleichm{\"a}ßig {\"u}ber die H{\"o}he austrocknet. Es wurde ein Nomogramm entwickelt, mit dem die Dauer der Kapillarphase in Abh{\"a}ngigkeit der Witterung f{\"u}r Straßenbetone abgesch{\"a}tzt werden kann. Eine kritische Austrocknung der wichtigen Randzone setzt nach Ende der Kapillarphase ein. F{\"u}r Betone unter Verwendung von Zementen mit langsamer Festigkeitsentwicklung ist die Austrocknung der Randzone nach Ende der Kapillarphase besonders ausgepr{\"a}gt. Im Ergebnis zeigen diese Betone dann einen geringen Frost-Tausalz-Widerstand. Mit Zementen, die eine 2d-Zementdruckfestigkeit ≥ 23,0 N/mm² aufweisen, wurde unabh{\"a}ngig von der Zementart (CEM I oder CEM II/B-S) auch dann ein hoher Frost-Tausalz-Widerstand erreicht, wenn keine oder eine schlechtere Nachbehandlung angewendet wurde. F{\"u}r die Praxis ergibt sich damit eine einfache M{\"o}glichkeit der Vorauswahl von geeigneten Zementen f{\"u}r den Verkehrsfl{\"a}chenbau. Betone, die unter Verwendung von Zementen mit langsamere Festigkeitsentwicklung hergestellt werden, erreichen einen hohen Frost-Tausalz-Widerstand nur mit einer geeigneten Nachbehandlung. Die Anwendung von fl{\"u}ssigen Nachbehandlungsmitteln (NBM gem{\"a}ß TL NBM-StB) erreicht eine {\"a}hnliche Wirksamkeit wie eine 5 t{\"a}gige Feuchtnachbehandlung. Voraussetzung f{\"u}r die Wirksamkeit der NBM ist, dass sie auf eine Betonoberfl{\"a}che ohne sichtbaren Feuchtigkeitsfilm (feuchter Glanz) aufgespr{\"u}ht werden. Besonders wichtig ist die Beachtung des richtigen Auftragszeitpunktes bei k{\"u}hler Witterung, da hier aufgrund der verlangsamten Zementreaktion der Beton l{\"a}nger Anmachwasser abst{\"o}ßt. Ein zu fr{\"u}her Auftrag des Nachbehandlungsmittels f{\"u}hrt zu einer Verschlechterung der Qualit{\"a}t der Betonrandzone. Durch Bereitstellung hydratationsabh{\"a}ngiger Transportkenngr{\"o}ßen (Feuchtetransport im Beton) konnten numerische Berechnungen zum Zusammenspiel zwischen der Austrocknung, der Nachbehandlung und der Gef{\"u}geentwicklung durchgef{\"u}hrt werden. Mit dem erstellten Berechnungsmodell wurden Parameterstudien durchgef{\"u}hrt. Die Berechnungen best{\"a}tigen die wesentlichen Erkenntnisse der Laboruntersuchungen. Dar{\"u}ber hinaus l{\"a}sst sich mit dem Berechnungsmodell zeigen, dass gerade bei langsam reagierenden Zementen und k{\"u}hler Witterung ohne eine Nachbehandlung eine sehr d{\"u}nne Randzone (ca. 500 µm - 1000 µm) mit stark erh{\"o}hter Kapillarporosit{\"a}t entsteht.}, subject = {Beton}, language = {de} }