@article{BandJanizadehChandraPaletal., author = {Band, Shahab S. and Janizadeh, Saeid and Chandra Pal, Subodh and Chowdhuri, Indrajit and Siabi, Zhaleh and Norouzi, Akbar and Melesse, Assefa M. and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration}, series = {Sensors}, volume = {2020}, journal = {Sensors}, number = {Volume 20, issue 20, article 5763}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s20205763}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43364}, pages = {1 -- 23}, abstract = {Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70\%) and testing (30\%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.}, subject = {Grundwasser}, language = {en} } @article{KarimimoshaverHajivalieiShokrietal., author = {Karimimoshaver, Mehrdad and Hajivaliei, Hatameh and Shokri, Manouchehr and Khalesro, Shakila and Aram, Farshid and Shamshirband, Shahaboddin}, title = {A Model for Locating Tall Buildings through a Visual Analysis Approach}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 17, article 6072}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10176072}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43350}, pages = {1 -- 25}, abstract = {Tall buildings have become an integral part of cities despite all their pros and cons. Some current tall buildings have several problems because of their unsuitable location; the problems include increasing density, imposing traffic on urban thoroughfares, blocking view corridors, etc. Some of these buildings have destroyed desirable views of the city. In this research, different criteria have been chosen, such as environment, access, social-economic, land-use, and physical context. These criteria and sub-criteria are prioritized and weighted by the analytic network process (ANP) based on experts' opinions, using Super Decisions V2.8 software. On the other hand, layers corresponding to sub-criteria were made in ArcGIS 10.3 simultaneously, then via a weighted overlay (map algebra), a locating plan was created. In the next step seven hypothetical tall buildings (20 stories), in the best part of the locating plan, were considered to evaluate how much of theses hypothetical buildings would be visible (fuzzy visibility) from the street and open spaces throughout the city. These processes have been modeled by MATLAB software, and the final fuzzy visibility plan was created by ArcGIS. Fuzzy visibility results can help city managers and planners to choose which location is suitable for a tall building and how much visibility may be appropriate. The proposed model can locate tall buildings based on technical and visual criteria in the future development of the city and it can be widely used in any city as long as the criteria and weights are localized.}, subject = {Geb{\"a}ude}, language = {en} } @article{BandJanizadehChandraPaletal., author = {Band, Shahab S. and Janizadeh, Saeid and Chandra Pal, Subodh and Saha, Asish and Chakrabortty, Rabbin and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility}, series = {Sensors}, volume = {2020}, journal = {Sensors}, number = {Volume 20, issue 19, article 5609}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s20195609}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43341}, pages = {1 -- 27}, abstract = {This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70\%) and testing (30\%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.}, subject = {Geoinformatik}, language = {en} } @article{MosaviQasemShokrietal., author = {Mosavi, Amir Hosein and Qasem, Sultan Noman and Shokri, Manouchehr and Band, Shahab S. and Mohammadzadeh, Ardashir}, title = {Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature}, series = {Electronics}, volume = {2020}, journal = {Electronics}, number = {Volume 9, issue 9, article 1455}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/electronics9091455}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43381}, pages = {1 -- 19}, abstract = {For this paper, the problem of energy/voltage management in photovoltaic (PV)/battery systems was studied, and a new fractional-order control system on basis of type-3 (T3) fuzzy logic systems (FLSs) was developed. New fractional-order learning rules are derived for tuning of T3-FLSs such that the stability is ensured. In addition, using fractional-order calculus, the robustness was studied versus dynamic uncertainties, perturbation of irradiation, and temperature and abruptly faults in output loads, and, subsequently, new compensators were proposed. In several examinations under difficult operation conditions, such as random temperature, variable irradiation, and abrupt changes in output load, the capability of the schemed controller was verified. In addition, in comparison with other methods, such as proportional-derivative-integral (PID), sliding mode controller (SMC), passivity-based control systems (PBC), and linear quadratic regulator (LQR), the superiority of the suggested method was demonstrated.}, subject = {Fuzzy-Logik}, language = {en} } @article{MosaviShokriMansoretal., author = {Mosavi, Amir Hosein and Shokri, Manouchehr and Mansor, Zulkefli and Qasem, Sultan Noman and Band, Shahab S. and Mohammadzadeh, Ardashir}, title = {Machine Learning for Modeling the Singular Multi-Pantograph Equations}, series = {Entropy}, volume = {2020}, journal = {Entropy}, number = {volume 22, issue 9, article 1041}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/e22091041}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43436}, pages = {1 -- 18}, abstract = {In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost.}, subject = {Fuzzy-Regelung}, language = {en} } @article{BandJanizadehSahaetal., author = {Band, Shahab S. and Janizadeh, Saeid and Saha, Sunil and Mukherjee, Kaustuv and Khosrobeigi Bozchaloei, Saeid and Cerd{\`a}, Artemi and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data}, series = {Land}, volume = {2020}, journal = {Land}, number = {volume 9, issue 10, article 346}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/land9100346}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210122-43424}, pages = {1 -- 22}, abstract = {Piping erosion is one form of water erosion that leads to significant changes in the landscape and environmental degradation. In the present study, we evaluated piping erosion modeling in the Zarandieh watershed of Markazi province in Iran based on random forest (RF), support vector machine (SVM), and Bayesian generalized linear models (Bayesian GLM) machine learning algorithms. For this goal, due to the importance of various geo-environmental and soil properties in the evolution and creation of piping erosion, 18 variables were considered for modeling the piping erosion susceptibility in the Zarandieh watershed. A total of 152 points of piping erosion were recognized in the study area that were divided into training (70\%) and validation (30\%) for modeling. The area under curve (AUC) was used to assess the effeciency of the RF, SVM, and Bayesian GLM. Piping erosion susceptibility results indicated that all three RF, SVM, and Bayesian GLM models had high efficiency in the testing step, such as the AUC shown with values of 0.9 for RF, 0.88 for SVM, and 0.87 for Bayesian GLM. Altitude, pH, and bulk density were the variables that had the greatest influence on the piping erosion susceptibility in the Zarandieh watershed. This result indicates that geo-environmental and soil chemical variables are accountable for the expansion of piping erosion in the Zarandieh watershed.}, subject = {Maschinelles Lernen}, language = {en} } @article{IşıkBueyueksaracLeventEkincietal., author = {I{\c{s}}{\i}k, Ercan and B{\"u}y{\"u}ksara{\c{c}}, Ayd{\i}n and Levent Ekinci, Yunus and Ayd{\i}n, Mehmet Cihan and Harirchian, Ehsan}, title = {The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey)}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7247}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42758}, pages = {23}, abstract = {The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2\%, 10\%, 50\%, and 68\% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province's design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.}, subject = {Erdbeben}, language = {en} } @article{HarirchianKumariJadhavetal., author = {Harirchian, Ehsan and Kumari, Vandana and Jadhav, Kirti and Raj Das, Rohan and Rasulzade, Shahla and Lahmer, Tom}, title = {A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7153}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207153}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42744}, pages = {18}, abstract = {Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure's performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building's behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings.}, subject = {Erdbeben}, language = {en} } @article{HarirchianJadhavMohammadetal., author = {Harirchian, Ehsan and Jadhav, Kirti and Mohammad, Kifaytullah and Aghakouchaki Hosseini, Seyed Ehsan and Lahmer, Tom}, title = {A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 18, article 6411}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10186411}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200918-42360}, pages = {24}, abstract = {Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared.}, subject = {Erdbebensicherheit}, language = {en} } @article{SaqlaiGhaniKhanetal., author = {Saqlai, Syed Muhammad and Ghani, Anwar and Khan, Imran and Ahmed Khan Ghayyur, Shahbaz and Shamshirband, Shahaboddin and Nabipour, Narjes and Shokri, Manouchehr}, title = {Image Analysis Using Human Body Geometry and Size Proportion Science for Action Classification}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {volume 10, issue 16, article 5453}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10165453}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200904-42322}, pages = {24}, abstract = {Gestures are one of the basic modes of human communication and are usually used to represent different actions. Automatic recognition of these actions forms the basis for solving more complex problems like human behavior analysis, video surveillance, event detection, and sign language recognition, etc. Action recognition from images is a challenging task as the key information like temporal data, object trajectory, and optical flow are not available in still images. While measuring the size of different regions of the human body i.e., step size, arms span, length of the arm, forearm, and hand, etc., provides valuable clues for identification of the human actions. In this article, a framework for classification of the human actions is presented where humans are detected and localized through faster region-convolutional neural networks followed by morphological image processing techniques. Furthermore, geometric features from human blob are extracted and incorporated into the classification rules for the six human actions i.e., standing, walking, single-hand side wave, single-hand top wave, both hands side wave, and both hands top wave. The performance of the proposed technique has been evaluated using precision, recall, omission error, and commission error. The proposed technique has been comparatively analyzed in terms of overall accuracy with existing approaches showing that it performs well in contrast to its counterparts.}, subject = {Bildanalyse}, language = {en} } @article{MengNomanQasemShokrietal., author = {Meng, Yinghui and Noman Qasem, Sultan and Shokri, Manouchehr and Shamshirband, Shahaboddin}, title = {Dimension Reduction of Machine Learning-Based Forecasting Models Employing Principal Component Analysis}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 8, article 1233}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8081233}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200811-42125}, pages = {15}, abstract = {In this research, an attempt was made to reduce the dimension of wavelet-ANFIS/ANN (artificial neural network/adaptive neuro-fuzzy inference system) models toward reliable forecasts as well as to decrease computational cost. In this regard, the principal component analysis was performed on the input time series decomposed by a discrete wavelet transform to feed the ANN/ANFIS models. The models were applied for dissolved oxygen (DO) forecasting in rivers which is an important variable affecting aquatic life and water quality. The current values of DO, water surface temperature, salinity, and turbidity have been considered as the input variable to forecast DO in a three-time step further. The results of the study revealed that PCA can be employed as a powerful tool for dimension reduction of input variables and also to detect inter-correlation of input variables. Results of the PCA-wavelet-ANN models are compared with those obtained from wavelet-ANN models while the earlier one has the advantage of less computational time than the later models. Dealing with ANFIS models, PCA is more beneficial to avoid wavelet-ANFIS models creating too many rules which deteriorate the efficiency of the ANFIS models. Moreover, manipulating the wavelet-ANFIS models utilizing PCA leads to a significant decreasing in computational time. Finally, it was found that the PCA-wavelet-ANN/ANFIS models can provide reliable forecasts of dissolved oxygen as an important water quality indicator in rivers.}, subject = {Maschinelles Lernen}, language = {en} } @article{HarirchianLahmerKumarietal., author = {Harirchian, Ehsan and Lahmer, Tom and Kumari, Vandana and Jadhav, Kirti}, title = {Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings}, series = {Energies}, volume = {2020}, journal = {Energies}, number = {volume 13, issue 13, 3340}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en13133340}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200707-41915}, pages = {15}, abstract = {The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 D{\"u}zce Earthquake in Turkey, where the building's data consists of 22 performance modifiers that have been implemented with supervised machine learning.}, subject = {Erdbeben}, language = {en} } @article{HarirchianLahmerRasulzade, author = {Harirchian, Ehsan and Lahmer, Tom and Rasulzade, Shahla}, title = {Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network}, series = {Energies}, volume = {2020}, journal = {Energies}, number = {Volume 13, Issue 8, 2060}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en13082060}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200504-41575}, pages = {16}, abstract = {The latest earthquakes have proven that several existing buildings, particularly in developing countries, are not secured from damages of earthquake. A variety of statistical and machine-learning approaches have been proposed to identify vulnerable buildings for the prioritization of retrofitting. The present work aims to investigate earthquake susceptibility through the combination of six building performance variables that can be used to obtain an optimal prediction of the damage state of reinforced concrete buildings using artificial neural network (ANN). In this regard, a multi-layer perceptron network is trained and optimized using a database of 484 damaged buildings from the D{\"u}zce earthquake in Turkey. The results demonstrate the feasibility and effectiveness of the selected ANN approach to classify concrete structural damage that can be used as a preliminary assessment technique to identify vulnerable buildings in disaster risk-management programs.}, subject = {Erdbeben}, language = {en} } @article{HarirchianLahmer, author = {Harirchian, Ehsan and Lahmer, Tom}, title = {Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, Issue 3, 2375}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10072375}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41161}, pages = {14}, abstract = {Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bing{\"o}l and D{\"u}zce earthquakes in Turkey.}, subject = {Fuzzy-Logik}, language = {en} } @article{AhmadiBaghbanSadeghzadehetal., author = {Ahmadi, Mohammad Hossein and Baghban, Alireza and Sadeghzadeh, Milad and Zamen, Mohammad and Mosavi, Amir and Shamshirband, Shahaboddin and Kumar, Ravinder and Mohammadi-Khanaposhtani, Mohammad}, title = {Evaluation of electrical efficiency of photovoltaic thermal solar collector}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1734094}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200304-41049}, pages = {545 -- 565}, abstract = {In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations.}, subject = {Fotovoltaik}, language = {en} } @article{ShamshirbandBabanezhadMosavietal., author = {Shamshirband, Shahaboddin and Babanezhad, Meisam and Mosavi, Amir and Nabipour, Narjes and Hajnal, Eva and Nadai, Laszlo and Chau, Kwok-Wing}, title = {Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1715842}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200227-41013}, pages = {367 -- 378}, abstract = {A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR.}, subject = {Maschinelles Lernen}, language = {en} } @article{SaadatfarKhosraviHassannatajJoloudarietal., author = {Saadatfar, Hamid and Khosravi, Samiyeh and Hassannataj Joloudari, Javad and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 2, article 286}, publisher = {MDPI}, doi = {10.3390/math8020286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200225-40996}, pages = {12}, abstract = {The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.}, subject = {Maschinelles Lernen}, language = {en} } @article{AmirinasabShamshirbandChronopoulosetal., author = {Amirinasab, Mehdi and Shamshirband, Shahaboddin and Chronopoulos, Anthony Theodore and Mosavi, Amir and Nabipour, Narjes}, title = {Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things}, series = {electronics}, volume = {2020}, journal = {electronics}, number = {volume 9, issue 2, 320}, publisher = {MDPI}, doi = {10.3390/electronics9020320}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40954}, pages = {20}, abstract = {The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8\% energy consumption in nodes while maintaining up to 99\% of the packet delivery rate (PDR).}, subject = {Internet der Dinge}, language = {en} } @article{OuaerHosseiniAmaretal., author = {Ouaer, Hocine and Hosseini, Amir Hossein and Amar, Menad Nait and Ben Seghier, Mohamed El Amine and Ghriga, Mohammed Abdelfetah and Nabipour, Narjes and Andersen, P{\aa}l {\O}steb{\o} and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Rigorous Connectionist Models to Predict Carbon Dioxide Solubility in Various Ionic Liquids}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, Issue 1, 304}, publisher = {MDPI}, doi = {https://doi.org/10.3390/app10010304}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200107-40558}, pages = {18}, abstract = {Estimating the solubility of carbon dioxide in ionic liquids, using reliable models, is of paramount importance from both environmental and economic points of view. In this regard, the current research aims at evaluating the performance of two data-driven techniques, namely multilayer perceptron (MLP) and gene expression programming (GEP), for predicting the solubility of carbon dioxide (CO2) in ionic liquids (ILs) as the function of pressure, temperature, and four thermodynamical parameters of the ionic liquid. To develop the above techniques, 744 experimental data points derived from the literature including 13 ILs were used (80\% of the points for training and 20\% for validation). Two backpropagation-based methods, namely Levenberg-Marquardt (LM) and Bayesian Regularization (BR), were applied to optimize the MLP algorithm. Various statistical and graphical assessments were applied to check the credibility of the developed techniques. The results were then compared with those calculated using Peng-Robinson (PR) or Soave-Redlich-Kwong (SRK) equations of state (EoS). The highest coefficient of determination (R2 = 0.9965) and the lowest root mean square error (RMSE = 0.0116) were recorded for the MLP-LMA model on the full dataset (with a negligible difference to the MLP-BR model). The comparison of results from this model with the vastly applied thermodynamic equation of state models revealed slightly better performance, but the EoS approaches also performed well with R2 from 0.984 up to 0.996. Lastly, the newly established correlation based on the GEP model exhibited very satisfactory results with overall values of R2 = 0.9896 and RMSE = 0.0201.}, subject = {Maschinelles Lernen}, language = {en} }