@inproceedings{Simsek, author = {Simsek, Yilmaz}, title = {ON INTERPOLATION FUNCTION OF THE BERNSTEIN POLYNOMIALS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2786}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27867}, pages = {8}, abstract = {The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di\ierential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960's to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SuzukiLawrynowiczNounoetal., author = {Suzuki, Osamu and Lawrynowicz, Julian and Nouno, Kiyoharu and Nagayama, Daiki}, title = {BINARY AND TERNARY CLIFFORD ANALYSIS ON NONION ALGEBRA AND SU(3)}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2788}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27880}, pages = {12}, abstract = {A concept of non-commutative Galois extension is introduced and binary and ternary extensions are chosen. Non-commutative Galois extensions of Nonion algebra and su(3) are constructed. Then ternary and binary Clifford analysis are introduced for non-commutative Galois extensions and the corresponding Dirac operators are associated.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{GonzalezCalvet, author = {Gonzalez Calvet, Ramon}, title = {NEW FOUNDATIONS FOR GEOMETRIC ALGEBRA}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2764}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27644}, pages = {12}, abstract = {New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea that Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n×n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multilinear quantities.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Hitzer, author = {Hitzer, Eckhard}, title = {THE CLIFFORD FOURIER TRANSFORM IN REAL CLIFFORD ALGEBRAS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2765}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27652}, pages = {11}, abstract = {We briefly review and use the recent comprehensive research on the manifolds of square roots of -1 in real Clifford geometric algebras Cl(p,q) in order to construct the Clifford Fourier transform. Basically in the kernel of the complex Fourier transform the complex imaginary unit j is replaced by a square root of -1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained generalizes previously known and applied CFTs, which replaced the complex imaginary unit j only by blades (usually pseudoscalars) squaring to -1. A major advantage of real Clifford algebra CFTs is their completely real geometric interpretation. We study (left and right) linearity of the CFT for constant multivector coefficients in Cl(p,q), translation (x-shift) and modulation (w -shift) properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also derive Plancherel and Parseval identities as well as a general convolution theorem.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MotraDimmigOsburgHildebrand, author = {Motra, Hem Bahadur and Dimmig-Osburg, Andrea and Hildebrand, J{\"o}rg}, title = {UNCERTAINTY QUANTIFICATION IN CYCLIC CREEP PREDICTION OF CONCRETE}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2780}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27803}, pages = {18}, abstract = {This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order.}, subject = {Angewandte Informatik}, language = {en} } @article{NguyenVinhBakarMsekhetal., author = {Nguyen-Vinh, H. and Bakar, I. and Msekh, Mohammed Abdulrazzak and Song, Jeong-Hoon and Muthu, Jacob and Zi, Goangseup and Le, P. and Bordas, St{\´e}phane Pierre Alain and Simpson, R. and Natarajan, S. and Lahmer, Tom and Rabczuk, Timon}, title = {Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials}, series = {Engineering Fracture Mechanics}, journal = {Engineering Fracture Mechanics}, doi = {10.1016/j.engfracmech.2012.04.025}, pages = {19 -- 31}, abstract = {We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement.}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukDiasdaCostaetal., author = {Areias, Pedro and Rabczuk, Timon and Dias-da-Costa, D. and Piresh, E.B.}, title = {Implicit solutions with consistent additive and multiplicative components}, series = {Finite Elements in Analysis and Design}, journal = {Finite Elements in Analysis and Design}, doi = {10.1016/j.finel.2012.03.007}, pages = {15 -- 31}, abstract = {This work describes an algorithm and corresponding software for incorporating general nonlinear multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarily interconnected multiple-point constraints are introduced by processing of multiplicative constituents with a built-in topological ordering of the resulting directed graph. A classification of discretization methods is performed and some re-classified problems are described and solved under this proposed perspective. The dependence relations between solution methods, algorithms and constituents becomes apparent. Fracture algorithms can be naturally casted in this framework. Solutions based on control equations are also directly incorporated as equality constraints. We show that arbitrary constituents can be used as long as the resulting directed graph is acyclic. It is also shown that graph partitions and orderings should be performed in the innermost part of the algorithm, a fact with some peculiar consequences. The core of our implicit code is described, specifically new algorithms for direct access of sparse matrices (by means of the clique structure) and general constituent processing. It is demonstrated that the graph structure of the second derivatives of the equality constraints are cliques (or pseudo-elements) and are naturally included as such. A complete algorithm is presented which allows a complete automation of equality constraints, avoiding the need of pre-sorting. Verification applications in four distinct areas are shown: single and multiple rigid body dynamics, solution control and computational fracture.}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangWangRabczuk, author = {Jiang, Jin-Wu and Wang, Bing-Shen and Rabczuk, Timon}, title = {Acoustic and breathing phonon modes in bilayer graphene with Moire-acute patterns}, series = {Applied Physics Letters}, journal = {Applied Physics Letters}, doi = {10.1063/1.4735246}, abstract = {The lattice dynamics properties are investigated for twisting bilayer graphene. There are big jumps for the inter-layer potential at twisting angle θ=0° and 60°, implying the stability of Bernal-stacking and the instability of AA-stacking structures, while a long platform in [8,55]° indicates the ease of twisting bilayer graphene in this wide angle range. Significant frequency shifts are observed for the z breathing mode around θ=0° and 60°, while the frequency is a constant in a wide range [8,55]°. Using the z breathing mode, a mechanical nanoresonator is proposed to operate on a robust resonant frequency in terahertz range.}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangZhaoZhouetal., author = {Jiang, Jin-Wu and Zhao, Jun-Hua and Zhou, K. and Rabczuk, Timon}, title = {Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4729489}, abstract = {The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green's function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm-1 K-1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young's modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85\%±0.05\% (ultimate) strain before undergoing structural phase transition into gaseous ethylene.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{OPUS4-2457, title = {International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2457}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150916-24571}, pages = {434}, abstract = {The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!}, subject = {Angewandte Informatik}, language = {en} } @article{JiangParkRabczuk, author = {Jiang, Jin-Wu and Park, Harold S. and Rabczuk, Timon}, title = {Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism}, subject = {Angewandte Mathematik}, language = {en} } @article{NatarajanChakrabortyThangaveletal., author = {Natarajan, S. and Chakraborty, S. and Thangavel, M. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Size dependent free flexural vibration behavior of functionally graded nanoplates}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {74 -- 80}, abstract = {Size dependent free flexural vibration behavior of functionally graded nanoplates}, subject = {Angewandte Mathematik}, language = {en} } @article{ChenRabczukLiuetal., author = {Chen, Lei and Rabczuk, Timon and Liu, G.R. and Zeng, K.Y. and Kerfriden, Pierre and Bordas, St{\´e}phane Pierre Alain}, title = {Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, doi = {10.1016/j.cma.2011.08.013}, abstract = {This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting "edge-based" smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, "super-convergence" and "ultra-accurate" solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction.}, subject = {Angewandte Mathematik}, language = {en} } @article{SimpsonBordasTrevelyanetal., author = {Simpson, R. and Bordas, St{\´e}phane Pierre Alain and Trevelyan, J. and Kerfriden, Pierre and Rabczuk, Timon}, title = {An Isogeometric Boundary Element Method for elastostatic analysis}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, doi = {10.1016/j.cma.2011.08.008}, abstract = {The concept of isogeometric analysis, where functions that are used to describe geometry in CAD software are used to approximate the unknown fields in numerical simulations, has received great attention in recent years. The method has the potential to have profound impact on engineering design, since the task of meshing, which in some cases can add significant overhead, has been circumvented. Much of the research effort has been focused on finite element implementations of the isogeometric concept, but at present, little has been seen on the application to the Boundary Element Method. The current paper proposes an Isogeometric Boundary Element Method (BEM), which we term IGABEM, applied to two-dimensional elastostatic problems using Non-Uniform Rational B-Splines (NURBS). We find it is a natural fit with the isogeometric concept since both the NURBS approximation and BEM deal with quantities entirely on the boundary. The method is verified against analytical solutions where it is seen that superior accuracies are achieved over a conventional quadratic isoparametric BEM implementation.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{NguyenGuerlebeck, author = {Nguyen, Manh Hung and G{\"u}rlebeck, Klaus}, title = {ON M-CONFORMAL MAPPINGS AND GEOMETRIC PROPERTIES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2783}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27833}, pages = {7}, abstract = {Monogenic functions play a role in quaternion analysis similarly to that of holomorphic functions in complex analysis. A holomorphic function with nonvanishing complex derivative is a conformal mapping. It is well-known that in Rn+1, n ≥ 2 the set of conformal mappings is restricted to the set of M{\"o}bius transformations only and that the M{\"o}bius transformations are not monogenic. The paper deals with a locally geometric mapping property of a subset of monogenic functions with nonvanishing hypercomplex derivatives (named M-conformal mappings). It is proved that M-conformal mappings orthogonal to all monogenic constants admit a certain change of solid angles and vice versa, that change can characterize such mappings. In addition, we determine planes in which those mappings behave like conformal mappings in the complex plane.}, subject = {Angewandte Informatik}, language = {en} } @article{ThaiNguyenXuanNguyenThanhetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Nguyen-Thanh, Nhon and Le, T.H. and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.4282}, pages = {571 -- 603}, abstract = {This paper presents a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones.}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenXuanRabczukNguyenThoietal., author = {Nguyen-Xuan, Hung and Rabczuk, Timon and Nguyen-Thoi, T. and Tran, T. and Nguyen-Thanh, Nhon}, title = {Computation of limit and shakedown loads using a node-based smoothed finite element method}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.3317}, pages = {287 -- 310}, abstract = {This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal-dual algorithm. An associated primal-dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal-dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoGuoRabczuk, author = {Zhao, Jun-Hua and Guo, Wanlin and Rabczuk, Timon}, title = {An analytical molecular mechanics model for the elastic properties of crystalline polyethylene}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4745035}, abstract = {We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials.}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiZiSilanietal., author = {Talebi, Hossein and Zi, Goangseup and Silani, Mohammad and Samaniego, Esteban and Rabczuk, Timon}, title = {A simple circular cell method for multilevel finite element analysis}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2012/526846}, abstract = {A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.}, subject = {Angewandte Mathematik}, language = {en} } @article{ChauDinhZiLeeetal., author = {Chau-Dinh, T. and Zi, Goangseup and Lee, P.S. and Song, Jeong-Hoon and Rabczuk, Timon}, title = {Phantom-node method for shell models with arbitrary cracks}, series = {Computers \& Structures}, journal = {Computers \& Structures}, doi = {10.1016/j.compstruc.2011.10.021}, abstract = {A phantom-node method is developed for three-node shell elements to describe cracks. This method can treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Elements are overlapped on the position of the crack, and they are partially integrated to implement the discontinuous displacement across the crack. To consider the element containing a crack tip, a new kinematical relation between the overlapped elements is developed. There is no enrichment function for the discontinuous displacement field. Several numerical examples are presented to illustrate the proposed method.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{Krausshar, author = {Kraußhar, Rolf S{\"o}ren}, title = {SOME HARMONIC ANALYSIS ON M{\"O}BIUS STRIP DOMAINS AND THE KLEIN BOTTLE IN Rn}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2769}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27692}, pages = {10}, abstract = {The aim of this paper we discuss explicit series constructions for the fundamental solution of the Helmholtz operator on some important examples non-orientable conformally at manifolds. In the context of this paper we focus on higher dimensional generalizations of the Klein bottle which in turn generalize higher dimensional M{\"o}bius strips that we discussed in preceding works. We discuss some basic properties of pinor valued solutions to the Helmholtz equation on these manifolds.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{LegatiukBockGuerlebeck, author = {Legatiuk, Dmitrii and Bock, Sebastian and G{\"u}rlebeck, Klaus}, title = {THE PROBLEM OF COUPLING BETWEEN ANALYTICAL SOLUTION AND FINITE ELEMENT METHOD}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2773}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27730}, pages = {11}, abstract = {This paper is focused on the first numerical tests for coupling between analytical solution and finite element method on the example of one problem of fracture mechanics. The calculations were done according to ideas proposed in [1]. The analytical solutions are constructed by using an orthogonal basis of holomorphic and anti-holomorphic functions. For coupling with finite element method the special elements are constructed by using the trigonometric interpolation theorem.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MalonekFalcaoCruz, author = {Malonek, Helmuth Robert and Falc{\~a}o, M. Irene and Cruz, Carla}, title = {TOTALLY REGULAR VARIABLES AND APPELL SEQUENCES IN HYPERCOMPLEX FUNCTION THEORY}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2775}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27751}, pages = {5}, abstract = {The aim of our contribution is to clarify the relation between totally regular variables and Appell sequences of hypercomplex holomorphic polynomials (sometimes simply called monogenic power-like functions) in Hypercomplex Function Theory. After their introduction in 2006 by two of the authors of this note on the occasion of the 17th IKM, the latter have been subject of investigations by different authors with different methods and in various contexts. The former concept, introduced by R. Delanghe in 1970 and later also studied by K. G{\"u}rlebeck in 1982 for the case of quaternions, has some obvious relationship with the latter, since it describes a set of linear hypercomplex holomorphic functions all power of which are also hypercomplex holomorphic. Due to the non-commutative nature of the underlying Clifford algebra, being totally regular variables or Appell sequences are not trivial properties as it is for the integer powers of the complex variable z=x+ iy. Simple examples show also, that not every totally regular variable and its powers form an Appell sequence and vice versa. Under some very natural normalization condition the set of all para-vector valued totally regular variables which are also Appell sequences will completely be characterized. In some sense the result can also be considered as an answer to a remark of K. Habetha in chapter 16: Function theory in algebras of the collection Complex analysis. Methods, trends, and applications, Akademie-Verlag Berlin, (Eds. E. Lanckau and W. Tutschke) 225-237 (1983) on the use of exact copies of several complex variables for the power series representation of any hypercomplex holomorphic function.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{AhmadZabelKoenke, author = {Ahmad, Sofyan and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2758}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27588}, pages = {14}, abstract = {In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSamaniegoSamaniegoetal., author = {Talebi, Hossein and Samaniego, C. and Samaniego, Esteban and Rabczuk, Timon}, title = {On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.3275}, pages = {1009 -- 1027}, abstract = {Meshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass-lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{MarzbanSchwarz, author = {Marzban, Samira and Schwarz, Jochen}, title = {MODEL QUALITY EVALUATION OF COUPLED RC FRAME-WALL SYSTEMS FOR GLOBAL DAMAGE ASSESSMENT}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2776}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27769}, pages = {14}, abstract = {Civil engineers take advantage of models to design reliable structures. In order to fulfill the design goal with a certain amount of confidence, the utilized models should be able to predict the probable structural behavior under the expected loading schemes. Therefore, a major challenge is to find models which provide less uncertain and more robust responses. The problem gets even twofold when the model to be studied is a global model comprised of different interacting partial models. This study aims at model quality evaluation of global models with a focus on frame-wall systems as the case study. The paper, presents the results of the first step taken toward accomplishing this goal. To start the model quality evaluation of the global frame-wall system, the main element (i.e. the wall) was studied through nonlinear static and dynamic analysis using two different modeling approaches. The two selected models included the fiber section model and the Multiple-Vertical-Line-Element-Model (MVLEM). The influence of the wall aspect ratio (H=L) and the axial load on the response of the models was studied. The results from nonlinear static and dynamic analysis of both models are presented and compared. The models resulted in quite different responses in the range of low aspect ratio walls under large axial loads due to different contribution of the shear deformations to the top displacement. In the studied cases, the results implied that careful attention should be paid to the model quality evaluation of the wall models specifically when they are supposed to be coupled to other partial models such as a moment frame or a soil-footing substructure which their response is sensitive to shear deformations. In this case, even a high quality wall model would not result in a high quality coupled system since it fails to interact properly with the rest of the system.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{StutzWuttke, author = {Stutz, Henning and Wuttke, Frank}, title = {EVALUATION OF SOIL-STRUCTURE INTERACTION MODELS USING DIFFERENT MODEL-ROBUSTNESS APPROACHES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2787}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27878}, pages = {15}, abstract = {The aim of this study is to show an application of model robustness measures for soilstructure interaction (henceforth written as SSI) models. Model robustness defines a measure for the ability of a model to provide useful model answers for input parameters which typically have a wide range in geotechnical engineering. The calculation of SSI is a major problem in geotechnical engineering. Several different models exist for the estimation of SSI. These can be separated into analytical, semi-analytical and numerical methods. This paper focuses on the numerical models of SSI specific macro-element type models and more advanced finite element method models using contact description as continuum or interface elements. A brief description of the models used is given in the paper. Following this description, the applied SSI problem is introduced. The observed event is a static loaded shallow foundation with an inclined load. The different partial models to consider the SSI effects are assessed using different robustness measures during numerical application. The paper shows the investigation of the capability to use these measures for the assessment of the model quality of SSI partial models. A variance based robustness and a mathematical robustness approaches are applied. These different robustness measures are used in a framework which allows also the investigation of computational time consuming models. Finally the result shows that the concept of using robustness approaches combined with other model-quality indicators (e.g. model sensitivity or model reliability) can lead to unique model-quality assessment for SSI models.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{DeebZabel, author = {Deeb, Maher and Zabel, Volkmar}, title = {THE APPLICATION OF POD CURVES TO DAMAGE DETECTION BASED ON PARTIAL MODELS- A NUMERICAL AND EXPERIMENTAL STUDY}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2761}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27615}, pages = {18}, abstract = {Non-destructive techniques for damage detection became the focus of engineering interests in the last few years. However, applying these techniques to large complex structures like civil engineering buildings still has some limitations since these types of structures are unique and the methodologies often need a large number of specimens for reliable results. For this reason, cost and time can greatly influence the final results. Model Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of damage identification techniques, especially with advances in computer capacity and modeling tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model in advance. This condition is opening the door for model assessment and model quality problems. In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability Of damage Detection (POD). A simply supported beam, that can be structurally modified and tested under laboratory conditions, is taken as an example. The study includes both experimental and numerical investigations, the application of vibration-based damage detection approaches and a comparison of the results obtained based on tests and simulations. Eventually, a proposal for a methodology to assess the reliability and the robustness of the models is given.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{LeMoraisSproessig, author = {Le, Hoai Thu and Morais, Joao and Spr{\"o}ßig, Wolfgang}, title = {ORTHOGONAL DECOMPOSITIONS AND THEIR APPLICATIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2772}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27729}, pages = {10}, abstract = {It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential. We then apply them to consider related boundary value problems, and to prove the existence and uniqueness as well as the explicit representation formulae of the underlying solutions.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MoraisGeorgievSproessig, author = {Morais, Joao and Georgiev, Svetlin and Spr{\"o}ßig, Wolfgang}, title = {A NOTE ON THE CLIFFORD FOURIER-STIELTJES TRANSFORM}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2779}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27794}, pages = {13}, abstract = {The purpose of this article is to provide an overview of the real Clifford Fourier- Stieltjes transform (CFST) and of its important properties. Additionally, we introduce the definition of convolution of Clifford functions of bounded variation.}, subject = {Angewandte Informatik}, language = {en} }