@article{MostBucherSchorling, author = {Most, Thomas and Bucher, Christian and Schorling, York}, title = {Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {381 -- 400}, abstract = {Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization}, series = {International Journal for Numerical and Analytical Methods in Geomechanics}, journal = {International Journal for Numerical and Analytical Methods in Geomechanics}, pages = {285 -- 305}, abstract = {Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares}, series = {Engineering Analysis with Boundary Elements}, journal = {Engineering Analysis with Boundary Elements}, pages = {461 -- 470}, abstract = {New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Probabilistic analysis of concrete cracking using neural networks and random fields}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {219 -- 229}, abstract = {Probabilistic analysis of concrete cracking using neural networks and random fields}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Stochastic simulation of cracking in concrete structures using multi-parameter random fields}, series = {International Journal of Reliability and Safety}, journal = {International Journal of Reliability and Safety}, pages = {168 -- 187}, abstract = {Stochastic simulation of cracking in concrete structures using multi-parameter random fields}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions}, series = {Structural Engineering and Mechanics}, journal = {Structural Engineering and Mechanics}, pages = {315 -- 332}, abstract = {A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions}, subject = {Angewandte Mathematik}, language = {en} } @article{KirichukMostBucher, author = {Kirichuk, A. and Most, Thomas and Bucher, Christian}, title = {Numerical nonlinear analysis of kinematically excited shells}, series = {International Journal for Computational Civil and Structural Engineering}, journal = {International Journal for Computational Civil and Structural Engineering}, pages = {61 -- 74}, abstract = {Numerical nonlinear analysis of kinematically excited shells}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherSchorling1997, author = {Bucher, Christian and Schorling, York}, title = {SLang - the Structural Language : Solving Nonlinear and Stochastic Problems in Structural Mechanics}, doi = {10.25643/bauhaus-universitaet.495}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4957}, year = {1997}, abstract = {Recent developments in structural mechanics indicate an increasing need of numerical methods to deal with stochasticity. This process started with the modeling of loading uncertainties. More recently, also system uncertainty, such as physical or geometrical imperfections are modeled in probabilistic terms. Clearly, this task requires close connenction of structural modeling with probabilistic modeling. Nonlinear effects are essential for a realistic description of the structural behavior. Since modern structural analysis relies quite heavily on the Finite Element Method, it seems to be quite reasonable to base stochastic structural analysis on this method. Commercially available software packages can cover deterministic structural analysis in a very wide range. However, the applicability of these packages to stochastic problems is rather limited. On the other hand, there is a number of highly specialized programs for probabilistic or reliability problems which can be used only in connection with rather simplistic structural models. In principle, there is the possibility to combine both kinds of software in order to achieve the goal. The major difficulty which then arises in practical computation is to define the most suitable way of transferring data between the programs. In order to circumvent these problems, the software package SLang (Structural Language) has been developed. SLang is a command interpreter which acts on a set of relatively complex commands. Each command takes input from and gives output to simple data structures (data objects), such as vectors and matrices. All commands communicate via these data objects which are stored in memory or on disk. The paper will show applications to structural engineering problems, in particular failure analysis of frames and shell structures with random loads and random imperfections. Both geometrical and physical nonlinearities are taken into account.}, subject = {Baustatik}, language = {en} } @article{BucherPham, author = {Bucher, Christian and Pham, Hoang Anh}, title = {On model updating of existing structures utilizing measured dynamic responses}, series = {Structure and Infrastructure Engineering}, journal = {Structure and Infrastructure Engineering}, pages = {135 -- 143}, abstract = {On model updating of existing structures utilizing measured dynamic responses}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherMost, author = {Bucher, Christian and Most, Thomas}, title = {A comparison of approximate response functions in structural reliability analysis}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {154 -- 163}, abstract = {A comparison of approximate response functions in structural reliability analysis}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherFrangopol, author = {Bucher, Christian and Frangopol, D.M.}, title = {Optimization of lifetime maintenance strategies for deteriorting structures considering probabilities of violating safety, condition, and cost thresholds}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {1 -- 8}, abstract = {Optimization of lifetime maintenance strategies for deteriorting structures considering probabilities of violating safety, condition, and cost thresholds}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherEbert, author = {Bucher, Christian and Ebert, Matthias}, title = {Nichtlineare Berechnung von Stahlflanschverbindungen mit gemessenen Imperfektionen}, series = {Stahlbau}, journal = {Stahlbau}, pages = {516 -- 522}, abstract = {Nichtlineare Berechnung von Stahlflanschverbindungen mit gemessenen Imperfektionen}, subject = {Angewandte Mathematik}, language = {de} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, doi = {10.1016/j.jsv.2010.07.006}, pages = {5375 -- 5392}, abstract = {In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion.}, subject = {Angewandte Mathematik}, language = {en} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study}, series = {Mechanical Systems and Signal Processing}, journal = {Mechanical Systems and Signal Processing}, abstract = {Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study}, subject = {Angewandte Mathematik}, language = {en} }