@book{OPUS4-4280, title = {Klangwelten gestalten. Zur Aktualit{\"a}t des Bauhauses in Sound Design und auditiver Stadtplanung}, volume = {2021}, editor = {Czolbe, Fabian and Pfleiderer, Martin}, publisher = {Mensch und Buch Verlag}, address = {Berlin}, isbn = {978-3-96729-089-9}, doi = {10.25643/bauhaus-universitaet.4280}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210219-42808}, publisher = {Hochschule f{\"u}r Musik FRANZ LISZT}, pages = {169}, abstract = {Die Gestaltung von Klangwelten ist in den letzten Jahrzehnten in den Fokus von Stadtplanern und Architekten, Produkt-Designern und Musikproduzenten, aber auch der historischen und kulturwissenschaftlichen Forschung ger{\"u}ckt. Der Tagungsband versteht sich als ein Beitrag zu diesem neuen Praxis- und Forschungsfeld. Er will zugleich Bezugspunkte zu Konzepten des Bauhauses als einem historischen Vorl{\"a}ufer aufzeigen.}, subject = {Sound Design}, language = {de} } @misc{Adler, type = {Master Thesis}, author = {Adler, Maria}, title = {Energiedissipation durch F{\"u}gestellend{\"a}mpfung in Leichtbauanwendungen}, doi = {10.25643/bauhaus-universitaet.4394}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210316-43949}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {71}, abstract = {In vielen Leichtbauanwendungen ist der begrenzende Faktor die Schwingungsanf{\"a}lligkeit der Bauteile. Eine M{\"o}glichkeit der Begrenzung von Schwingungsamplituden ist der gezielte Einsatz von Reibungsd{\"a}mpfung in Leichtbaustrukturen. In dieser Arbeit wird der Einfluss dieser Art von Energiedissipation auf Leichtmetallstrukturen sowie topologieoptimierte Bauteil untersucht. Betrachtet werden dabei die Positionierung, Dimensionierung sowie die Reibeigenschaften dissipativer Elemente.}, subject = {Leichtbau}, language = {de} } @phdthesis{AlKhatib2021, author = {Al Khatib, Khalid}, title = {Computational Analysis of Argumentation Strategies}, doi = {10.25643/bauhaus-universitaet.4461}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210719-44612}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {134}, year = {2021}, abstract = {The computational analysis of argumentation strategies is substantial for many downstream applications. It is required for nearly all kinds of text synthesis, writing assistance, and dialogue-management tools. While various tasks have been tackled in the area of computational argumentation, such as argumentation mining and quality assessment, the task of the computational analysis of argumentation strategies in texts has so far been overlooked. This thesis principally approaches the analysis of the strategies manifested in the persuasive argumentative discourses that aim for persuasion as well as in the deliberative argumentative discourses that aim for consensus. To this end, the thesis presents a novel view of argumentation strategies for the above two goals. Based on this view, new models for pragmatic and stylistic argument attributes are proposed, new methods for the identification of the modelled attributes have been developed, and a new set of strategy principles in texts according to the identified attributes is presented and explored. Overall, the thesis contributes to the theory, data, method, and evaluation aspects of the analysis of argumentation strategies. The models, methods, and principles developed and explored in this thesis can be regarded as essential for promoting the applications mentioned above, among others.}, subject = {Argumentation}, language = {en} } @misc{Alabassy, type = {Master Thesis}, author = {Alabassy, Mohamed Said Helmy}, title = {Automated Approach for Building Information Modelling of Crack Damages via Image Segmentation and Image-based 3D Reconstruction}, doi = {10.25643/bauhaus-universitaet.6416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230818-64162}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {101}, abstract = {As machine vision-based inspection methods in the field of Structural Health Monitoring (SHM) continue to advance, the need for integrating resulting inspection and maintenance data into a centralised building information model for structures notably grows. Consequently, the modelling of found damages based on those images in a streamlined automated manner becomes increasingly important, not just for saving time and money spent on updating the model to include the latest information gathered through each inspection, but also to easily visualise them, provide all stakeholders involved with a comprehensive digital representation containing all the necessary information to fully understand the structure's current condition, keep track of any progressing deterioration, estimate the reduced load bearing capacity of the damaged element in the model or simulate the propagation of cracks to make well-informed decisions interactively and facilitate maintenance actions that optimally extend the service life of the structure. Though significant progress has been recently made in information modelling of damages, the current devised methods for the geometrical modelling approach are cumbersome and time consuming to implement in a full-scale model. For crack damages, an approach for a feasible automated image-based modelling is proposed utilising neural networks, classical computer vision and computational geometry techniques with the aim of creating valid shapes to be introduced into the information model, including related semantic properties and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation of such models opens the door for further possible uses ranging from more accurate structural analysis possibilities to simulation of damage propagation in model elements, estimating deterioration rates and allows for better documentation, data sharing, and realistic visualisation of damages in a 3D model.}, subject = {Building Information Modeling}, language = {en} } @phdthesis{Alkam, author = {Alkam, Feras}, title = {Vibration-based Monitoring of Concrete Catenary Poles using Bayesian Inference}, volume = {2021}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.4433}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210526-44338}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {177}, abstract = {This work presents a robust status monitoring approach for detecting damage in cantilever structures based on logistic functions. Also, a stochastic damage identification approach based on changes of eigenfrequencies is proposed. The proposed algorithms are verified using catenary poles of electrified railways track. The proposed damage features overcome the limitation of frequency-based damage identification methods available in the literature, which are valid to detect damage in structures to Level 1 only. Changes in eigenfrequencies of cantilever structures are enough to identify possible local damage at Level 3, i.e., to cover damage detection, localization, and quantification. The proposed algorithms identified the damage with relatively small errors, even at a high noise level.}, subject = {Parameteridentifikation}, language = {en} } @article{AlkamLahmer, author = {Alkam, Feras and Lahmer, Tom}, title = {A robust method of the status monitoring of catenary poles installed along high-speed electrified train tracks}, series = {Results in Engineering}, volume = {2021}, journal = {Results in Engineering}, number = {volume 12, article 100289}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2021.100289}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211011-45212}, pages = {1 -- 8}, abstract = {Electric trains are considered one of the most eco-friendly and safest means of transportation. Catenary poles are used worldwide to support overhead power lines for electric trains. The performance of the catenary poles has an extensive influence on the integrity of the train systems and, consequently, the connected human services. It became a must nowadays to develop SHM systems that provide the instantaneous status of catenary poles in- service, making the decision-making processes to keep or repair the damaged poles more feasible. This study develops a data-driven, model-free approach for status monitoring of cantilever structures, focusing on pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed train tracks. The pro-posed approach evaluates multiple damage features in an unfied damage index, which leads to straightforward interpretation and comparison of the output. Besides, it distinguishes between multiple damage scenarios of the poles, either the ones caused by material degradation of the concrete or by the cracks that can be propagated during the life span of the given structure. Moreover, using a logistic function to classify the integrity of structure avoids the expensive learning step in the existing damage detection approaches, namely, using the modern machine and deep learning methods. The findings of this study look very promising when applied to other types of cantilever structures, such as the poles that support the power transmission lines, antenna masts, chimneys, and wind turbines.}, subject = {Fahrleitung}, language = {en} } @article{AlkamLahmer, author = {Alkam, Feras and Lahmer, Tom}, title = {Eigenfrequency-Based Bayesian Approach for Damage Identification in Catenary Poles}, series = {Infrastructures}, volume = {2021}, journal = {Infrastructures}, number = {Volume 6, issue 4, article 57}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures6040057}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210510-44256}, pages = {1 -- 19}, abstract = {This study proposes an efficient Bayesian, frequency-based damage identification approach to identify damages in cantilever structures with an acceptable error rate, even at high noise levels. The catenary poles of electric high-speed train systems were selected as a realistic case study to cover the objectives of this study. Compared to other frequency-based damage detection approaches described in the literature, the proposed approach is efficiently able to detect damages in cantilever structures to higher levels of damage detection, namely identifying both the damage location and severity using a low-cost structural health monitoring (SHM) system with a limited number of sensors; for example, accelerometers. The integration of Bayesian inference, as a stochastic framework, in the proposed approach, makes it possible to utilize the benefit of data fusion in merging the informative data from multiple damage features, which increases the quality and accuracy of the results. The findings provide the decision-maker with the information required to manage the maintenance, repair, or replacement procedures.}, subject = {Fahrleitung}, language = {en} } @article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and Voelker, Conrad}, title = {The effect of a living wall system designated for greywater treatment on the hygrothermal performance of the facade}, series = {Energy and Buildings}, volume = {2022}, journal = {Energy and Buildings}, number = {volume 255, article 111711}, doi = {10.1016/j.enbuild.2021.111711}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20240116-65299}, pages = {17}, abstract = {Besides their multiple known benefits regarding urban microclimate, living walls can be used as decentralized stand-alone systems to treat greywater locally at the buildings. While this offers numerous environmental advantages, it can have a considerable impact on the hygrothermal performance of the facade as such systems involve bringing large quantities of water onto the facade. As it is difficult to represent complex entities such as plants in the typical simulation tools used for heat and moisture transport, this study suggests a new approach to tackle this challenge by coupling two tools: ENVI-Met and Delphin. ENVI-Met was used to simulate the impact of the plants to determine the local environmental parameters at the living wall. Delphin, on the other hand, was used to conduct the hygrothermal simulations using the local parameters calculated by ENVI-Met. Four wall constructions were investigated in this study: an uninsulated brick wall, a precast concrete plate, a sandy limestone wall, and a double-shell wall. The results showed that the living wall improved the U-value, the exterior surface temperature, and the heat flux through the wall. Moreover, the living wall did not increase the risk of moisture in the wall during winter and eliminated the risk of condensation.}, subject = {Feuchteleitung}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography}, series = {Building and Environment}, volume = {2020}, journal = {Building and Environment}, number = {Volume 167, article 106450}, publisher = {Elsevier}, address = {New York}, doi = {10.25643/bauhaus-universitaet.4511}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211008-45117}, pages = {11}, abstract = {Personalized ventilation (PV) is a mean of delivering conditioned outdoor air into the breathing zone of the occupants. This study aims to qualitatively investigate the personalized flows using two methods of visualization: (1) schlieren imaging using a large schlieren mirror and (2) thermography using an infrared camera. While the schlieren imaging was used to render the velocity and mass transport of the supplied flow, thermography was implemented to visualize the air temperature distribution induced by the PV. Both studies were conducted using a thermal manikin to simulate an occupant facing a PV outlet. As a reference, the flow supplied by an axial fan and a cased axial fan was visualized with the schlieren system as well and compared to the flow supplied by PV. Schlieren visualization results indicate that the steady, low-turbulence flow supplied by PV was able to penetrate the thermal convective boundary layer encasing the manikin's body, providing clean air for inhalation. Contrarily, the axial fan diffused the supplied air over a large target area with high turbulence intensity; it only disturbed the convective boundary layer rather than destroying it. The cased fan supplied a flow with a reduced target area which allowed supplying more air into the breathing zone compared to the fan. The results of thermography visualization showed that the supplied cool air from PV penetrated the corona-shaped thermal boundary layer. Furthermore, the supplied air cooled the surface temperature of the face, which indicates the large impact of PV on local thermal sensation and comfort.}, subject = {Bildverarbeitung}, language = {en} } @inproceedings{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Measuring and visualizing the flow supplied by personalized ventilation}, series = {Proceedings Book Roomvent 2020}, booktitle = {Proceedings Book Roomvent 2020}, address = {Turin, Italy}, doi = {10.25643/bauhaus-universitaet.4657}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220622-46573}, abstract = {This study investigates the flow supplied by personalized ventilation (PV) by means of anemometer measurements and schlieren visualization. The study was conducted using a thermal manikin to simulate a seated occupant facing a PV outlet. Air velocity was measured at multiple points in the flow field; the collected velocity values were used to calculate the turbulence intensity. Results indicated that PV was supplying air with low turbulence intensity that was able to penetrate the convective boundary layer of the manikin to supply clean air for inhalation. The convective boundary layer, however, obstructed the supplied flow and reduced its velocity by a total of 0.26 m/s. The PV flow preserved its value until about 10 cm from the face where velocity started to drop. Further investigations were conducted to test a PV diffuser with a relatively large outlet diameter (18 cm). This diffuser was developed using 3d-modelling and 3d-printing. The diffuser successfully distributed the flow over the larger outlet area. However, the supplied velocity and turbulence fields were not uniform across the section.}, subject = {Bel{\"u}ftung}, language = {en} } @article{AnicPenavaSarhosisetal., author = {Anic, Filip and Penava, Davorin and Sarhosis, Vasilis and Abrahamczyk, Lars}, title = {Development and Calibration of a 3D Micromodel for Evaluation of Masonry Infilled RC Frame Structural Vulnerability to Earthquakes}, series = {Geosciences}, volume = {2021}, journal = {Geosciences}, number = {Voume 11, issue 11, article 468}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/geosciences11110468}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211202-45370}, pages = {23}, abstract = {Within the scope of literature, the influence of openings within the infill walls that are bounded by a reinforced concrete frame and excited by seismic drift forces in both in- and out-of-plane direction is still uncharted. Therefore, a 3D micromodel was developed and calibrated thereafter, to gain more insight in the topic. The micromodels were calibrated against their equivalent physical test specimens of in-plane, out-of-plane drift driven tests on frames with and without infill walls and openings, as well as out-of-plane bend test of masonry walls. Micromodels were rectified based on their behavior and damage states. As a result of the calibration process, it was found that micromodels were sensitive and insensitive to various parameters, regarding the model's behavior and computational stability. It was found that, even within the same material model, some parameters had more effects when attributed to concrete rather than on masonry. Generally, the in-plane behavior of infilled frames was found to be largely governed by the interface material model. The out-of-plane masonry wall simulations were governed by the tensile strength of both the interface and masonry material model. Yet, the out-of-plane drift driven test was governed by the concrete material properties.}, subject = {Verwundbarkeit}, language = {en} } @phdthesis{Arzmi, author = {Arzmi, Azmah}, title = {Reinterpreting Marzahn, Berlin \& Petržalka, Bratislava: From Process of State Socialist Utopia to Utopia of State Capitalist Process}, doi = {10.25643/bauhaus-universitaet.4392}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210315-43927}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Housing estates were fundamentally conceived upon state socialist utopia ideas to provide standard housing for citizens. While former state socialist housing estates have been extensively researched in the field of architecture, urban and sociology studies, there is still a gap in identifying how production processes affect morphological changes during the post-socialist era. This thesis compares the processes in the production of the largest housing estates of Marzahn in GDR and Petržalka in Czechoslovakia from 1970 to 1989 through contextual analysis of primary and secondary sources, which include visual maps, diagrams from professional architecture and planning journals, government documents and textbooks, as well as academic journals, books and newspaper articles. Then it discusses how these processes inadvertently created conducive conditions affecting their development in the market economy after 1989. It then interprets the results through application of Actor-Network Theory and Historical Institutionalism, while conceptualising them through David Harvey's dialectical utopianism theory. Harvey (2000) delineates two types of utopia, one of spatial form and one of process. The former refers to materialised ideals in physical forms whereas the latter refers to the ongoing process of spatializing. The thesis aims to show how the production of Marzahn in GDR was more path dependent on policies established in 1950s and 1960s whereas Petržalka was a product of new Czechoslovakian policies in 1970s, changing aspects of the urban planning process, a manifestation of a more emphatic technocratic thinking on a wider scale. This ultimately influences the trajectories of development after 1989, showing more effects in Petržalka.}, subject = {Kulturerbe}, language = {en} } @misc{Baron, author = {Baron, Nicole}, title = {Verflechtungen im st{\"a}dtischen Gef{\"u}ge. Rezension zu Barbara Heer (2019): Cities of entanglements. Social life in Johannesburg and Maputo through ethnographic comparison}, series = {sub\urban. Zeitschrift f{\"u}r Kritische Stadtforschung}, volume = {2021}, journal = {sub\urban. Zeitschrift f{\"u}r Kritische Stadtforschung}, number = {Band 9, Heft 1/2}, publisher = {sub\urban e. V.}, address = {Berlin}, doi = {10.36900/suburban.v9i1/2.664}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210806-44785}, pages = {235 -- 240}, abstract = {Dieser Artikel rezensiert die {\"u}berarbeitete Version von Barbara Heers Dissertation zu st{\"a}dtischen Verflechtungen in Johannesburg und Maputo. Das Buch ist 2019 im Transcript Verlag erschienen und umfasst 337 Seiten.}, subject = {S{\"u}dafrika}, language = {de} } @phdthesis{Baron, author = {Baron, Nicole}, title = {Natural Urban Resilience: Understanding general urban resilience through Addis Ababa's inner city}, doi = {10.25643/bauhaus-universitaet.4416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210428-44166}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {This dissertation describes the urban actors and spatial practices that contribute to natural urban resilience in Addis Ababa's inner city. Natural urban resilience is a non-strategical and bottom-up, everyday form of general urban resilience - an urban system's ability to maintain its essential characteristics under any change. This study gains significance by exposing conceptual gaps in the current un-derstanding of general urban resilience and highlighting its unconvincing applicability to African cities. This study attains further relevance by highlighting the danger of the ongoing large-scale redevelopment of the inner city. The inner city has naturally formed, and its urban memory, spaces, and social cohesion contribute to its primarily low-income population's resilience. This thesis argues that the inner city's demolition poses an incalculable risk of maladaptation to future stresses and shocks for Addis Ababa. The city needs a balanced urban discourse that highlights the inner city's qualities and suggests feasible urban transformation measures. "Natural Urban Resilience" contributes an empirical study to the debate by identifying those aspects of the inner city that contribute to general resilience and identifies feasible action areas. This study develops a qualitative research design for a single case study in Addis Ababa. The data is obtained through expert interviews, interviews with resi-dents, and the analysis of street scene photos, which are abstracted using Grounded Theory. That way, this thesis provides first-time knowledge about who and what generates urban resilience in the inner city of Addis Ababa and how. Furthermore, the study complements existing theories on general urban resilience. It provides a detailed understanding of the change mechanisms in resilience, of which it identifies four: adaptation, upgrading, mitigation, and resistance. It also adapts the adaptive cycle, a widely used concept in resilience thinking, conceptually for urban environments. The study concludes that the inner city's continued redevelopment poses an incalculable threat to the entire city. Therefore, "Natural urban resilience" recommends carefully weighing any intervention in the inner city to promote Addis Ababa's overall resilience. This dissertation proposes a pattern language for natural urban resilience to support these efforts and to translate the model of natural urban resilience into practice.}, subject = {Stadtforschung}, language = {en} } @article{BecherGenaAlsaadetal., author = {Becher, Lia and Gena, Amayu Wakoya and Alsaad, Hayder and Richter, Bernhard and Spahn, Claudia and V{\"o}lker, Conrad}, title = {The spread of breathing air from wind instruments and singers using schlieren techniques}, series = {Indoor Air}, volume = {2021}, journal = {Indoor Air}, number = {volume 31, issue 6}, publisher = {Wiley Blackwell}, address = {Oxford}, doi = {10.1111/ina.12869}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45817}, pages = {1798 -- 1814}, abstract = {The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.}, subject = {Covid-19}, language = {en} } @phdthesis{Berhe, author = {Berhe, Asgedom Haile}, title = {Mitigating Risks of Corruption in Construction: A theoretical rationale for BIM adoption in Ethiopia}, doi = {10.25643/bauhaus-universitaet.4517}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211007-45175}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {336}, abstract = {This PhD thesis sets out to investigate the potentials of Building Information Modeling (BIM) to mitigate risks of corruption in the Ethiopian public construction sector. The wide-ranging capabilities and promises of BIM have led to the strong perception among researchers and practitioners that it is an indispensable technology. Consequently, it has become the frequent subject of science and research. Meanwhile, many countries, especially the developed ones, have committed themselves to applying the technology extensively. Increasing productivity is the most common and frequently cited reason for that. However, both technology developers and adopters are oblivious to the potentials of BIM in addressing critical challenges in the construction sector, such as corruption. This particularly would be significant in developing countries like Ethiopia, where its problems and effects are acute. Studies reveal that bribery and corruption have long pervaded the construction industry worldwide. The complex and fragmented nature of the sector provides an environment for corruption. The Ethiopian construction sector is not immune from this epidemic reality. In fact, it is regarded as one of the most vulnerable sectors owing to varying socio-economic and political factors. Since 2015, Ethiopia has started adopting BIM, yet without clear goals and strategies. As a result, the potential of BIM for combating concrete problems of the sector remains untapped. To this end, this dissertation does pioneering work by showing how collaboration and coordination features of the technology contribute to minimizing the opportunities for corruption. Tracing loopholes, otherwise, would remain complex and ineffective in the traditional documentation processes. Proceeding from this anticipation, this thesis brings up two primary questions: what are areas and risks of corruption in case of the Ethiopian public construction projects; and how could BIM be leveraged to mitigate these risks? To tackle these and other secondary questions, the research employs a mixed-method approach. The selected main research strategies are Survey, Grounded Theory (GT) and Archival Study. First, the author disseminates an online questionnaire among Ethiopian construction engineering professionals to pinpoint areas of vulnerability to corruption. 155 responses are compiled and scrutinized quantitatively. Then, a semi-structured in-depth interview is conducted with 20 senior professionals, primarily to comprehend opportunities for and risks of corruption in those identified highly vulnerable project stages and decision points. At the same time, open interviews (consultations) are held with 14 informants to be aware of state of the construction documentation, BIM and loopholes for corruption in the country. Consequently, these qualitative data are analyzed utilizing the principles of GT, heat/risk mapping and Social Network Analysis (SNA). The risk mapping assists the researcher in the course of prioritizing corruption risks; whilst through SNA, methodically, it is feasible to identify key actors/stakeholders in the corruption venture. Based on the generated research data, the author constructs a [substantive] grounded theory around the elements of corruption in the Ethiopian public construction sector. This theory, later, guides the subsequent strategic proposition of BIM. Finally, 85 public construction related cases are also analyzed systematically to substantiate and confirm previous findings. By ways of these multiple research endeavors that is based, first and foremost, on the triangulation of qualitative and quantitative data analysis, the author conveys a number of key findings. First, estimations, tender document preparation and evaluation, construction material as well as quality control and additional work orders are found to be the most vulnerable stages in the design, tendering and construction phases respectively. Second, middle management personnel of contractors and clients, aided by brokers, play most critical roles in corrupt transactions within the prevalent corruption network. Third, grand corruption persists in the sector, attributed to the fact that top management and higher officials entertain their overriding power, supported by the lack of project audits and accountability. Contrarily, individuals at operation level utilize intentional and unintentional 'errors' as an opportunity for corruption. In light of these findings, two conceptual BIM-based risk mitigation strategies are prescribed: active and passive automation of project audits; and the monitoring of project information throughout projects' value chain. These propositions are made in reliance on BIM's present dimensional capabilities and the promises of Integrated Project Delivery (IPD). Moreover, BIM's synchronous potentials with other technologies such as Information and Communication Technology (ICT), and Radio Frequency technologies are topics which received a treatment. All these arguments form the basis for the main thesis of this dissertation, that BIM is able to mitigate corruption risks in the Ethiopian public construction sector. The discourse on the skepticisms about BIM that would stem from the complex nature of corruption and strategic as well as technological limitations of BIM is also illuminated and complemented by this work. Thus, the thesis uncovers possible research gaps and lays the foundation for further studies.}, subject = {Building Information Modeling}, language = {en} } @phdthesis{Bianco, author = {Bianco, Marcelo Jos{\´e}}, title = {Coupling between Shell and Generalized Beam Theory (GBT) elements}, doi = {10.25643/bauhaus-universitaet.4391}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210315-43914}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {265}, abstract = {In the last decades, Finite Element Method has become the main method in statics and dynamics analysis in engineering practice. For current problems, this method provides a faster, more flexible solution than the analytic approach. Prognoses of complex engineer problems that used to be almost impossible to solve are now feasible. Although the finite element method is a robust tool, it leads to new questions about engineering solutions. Among these new problems, it is possible to divide into two major groups: the first group is regarding computer performance; the second one is related to understanding the digital solution. Simultaneously with the development of the finite element method for numerical solutions, a theory between beam theory and shell theory was developed: Generalized Beam Theory, GBT. This theory has not only a systematic and analytical clear presentation of complicated structural problems, but also a compact and elegant calculation approach that can improve computer performance. Regrettably, GBT was not internationally known since the most publications of this theory were written in German, especially in the first years. Only in recent years, GBT has gradually become a fertile research topic, with developments from linear to non-linear analysis. Another reason for the misuse of GBT is the isolated application of the theory. Although recently researches apply finite element method to solve the GBT's problems numerically, the coupling between finite elements of GBT and other theories (shell, solid, etc) is not the subject of previous research. Thus, the main goal of this dissertation is the coupling between GBT and shell/membrane elements. Consequently, one achieves the benefits of both sides: the versatility of shell elements with the high performance of GBT elements. Based on the assumptions of GBT, this dissertation presents how the separation of variables leads to two calculation's domains of a beam structure: a cross-section modal analysis and the longitudinal amplification axis. Therefore, there is the possibility of applying the finite element method not only in the cross-section analysis, but also the development for an exact GBT's finite element in the longitudinal direction. For the cross-section analysis, this dissertation presents the solution of the quadratic eigenvalue problem with an original separation between plate and membrane mechanism. Subsequently, one obtains a clearer representation of the deformation mode, as well as a reduced quadratic eigenvalue problem. Concerning the longitudinal direction, this dissertation develops the novel exact elements, based on hyperbolic and trigonometric shape functions. Although these functions do not have trivial expressions, they provide a recursive procedure that allows periodic derivatives to systematise the development of stiffness matrices. Also, these shape functions enable a single-element discretisation of the beam structure and ensure a smooth stress field. From these developments, this dissertation achieves the formulation of its primary objective: the connection of GBT and shell elements in a mixed model. Based on the displacement field, it is possible to define the coupling equations applied in the master-slave method. Therefore, one can model the structural connections and joints with finite shell elements and the structural beams and columns with GBT finite element. As a side effect, the coupling equations limit the displacement field of the shell elements under the assumptions of GBT, in particular in the neighbourhood of the coupling cross-section. Although these side effects are almost unnoticeable in linear analysis, they lead to cumulative errors in non-linear analysis. Therefore, this thesis finishes with the evaluation of the mixed GBT-shell models in non-linear analysis.}, subject = {Biegetheorie}, language = {en} } @phdthesis{Bielik, author = {Bielik, Martin}, title = {FORM-ACTIVITY-MOVEMENT INTERACTION MODEL}, doi = {10.25643/bauhaus-universitaet.4397}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210407-43970}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {269}, abstract = {This dissertation investigates the interactions between urban form, allocation of activities, and pedestrian movement in the context of urban planning. The ability to assess the long-term impact of urban planning decisions on what people do and how they get there is of central importance, with various disciplines addressing this topic. This study focuses on approaches proposed by urban morphologists, urban economists, and transportation planners, each aiming the attention at a different part of the form-activity-movement interaction. Even though there is no doubt about the advantages of these highly focused approaches, it remains unclear what is the cost of ignoring the effect of some interactions while considering others. The general aim of this dissertation is to empirically test the validity of the individual models and quantify the impact of this isolationist approach on their precision and bias. For this purpose, we propose a joined form-activity-movement interaction model and conduct an empirical study in Weimar, Germany. We estimate how the urban form and activities affect movement as well as how movement and urban form affect activities. By estimating these effects in isolation and simultaneously, we assess the bias of the individual models. On the one hand, the empirical study results confirm the significance of all interactions suggested by the individual models. On the other hand, we were able to show that when these interactions are estimated in isolation, the resulting predictions are biased. To conclude, we do not question the knowledge brought by transportation planners, urban morphologists, and urban economists. However, we argue that it might be of little use on its own. We see the relevance of this study as being twofold. On the one hand, we proposed a novel methodological framework for the simultaneous estimation of the form-activity-movement interactions. On the other hand, we provide empirical evidence about the strengths and limitations of current approaches.}, subject = {Stadtplanung}, language = {en} } @phdthesis{Bockelmann, author = {Bockelmann, Leo}, title = {Zeit, dass sich was dreht. Windenergieanlagen aus denkmalkundlicher Perspektive}, doi = {10.25643/bauhaus-universitaet.4543}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211210-45439}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {233}, abstract = {Knapp 30.000 Windenergieanlagen zwischen Nordsee und Alpen lassen un{\"u}bersehbar erkennen, dass sich unser Energiesystem in einer umfassenden Transformation befindet. Allenthalben erf{\"a}hrt diese Entwicklung eine breite und kontroverse Rezeption und auch in der Denkmalpflege werden Windenergieanlagen aufgrund ihrer mitunter erheblichen Auswirkungen auf die Landschaft noch {\"u}berwiegend als St{\"o}rung wahrgenommen. Diese Arbeit nimmt dagegen die historische Entwicklung in den Blick und pl{\"a}diert daf{\"u}r, Windenergieanlagen als bedeutendes Kulturerbe zu verstehen. Angesichts des Voranschreitens der Energiewende wird angenommen, dass gerade {\"a}lteren Modellen als baulichen Zeugnissen umfangreicher energiepolitischer Ver{\"a}nderungen seit den 1970er Jahren eine hohe Bedeutung zugeschrieben werden kann. Daher besteht das Ziel darin, Windenergieanlagen herauszuarbeiten, welche als hervorragende Zeugnisse der Entwicklung der Windenergienutzung in Deutschland zu bewerten sind. Zur Ann{\"a}herung werden diese zun{\"a}chst als Untersuchungsgegenstand typologisch abgegrenzt. Eine wesentliche Besonderheit von Windenergieanlagen besteht darin, dass sie im Verh{\"a}ltnis zur eigentlichen Fl{\"a}chenversiegelung durch ihre vertikale Struktur erhebliche visuelle Auswirkungen auf die Landschaft haben. Anschließend wird die Entwicklung der Windenergienutzung seit den 1970er Jahren genauer betrachtet, welche insgesamt nicht linear verlief und von vielen Konflikten gekennzeichnet ist. Diese muss im Kontext eines wachsenden Umweltbewusstseins verstanden werden, das umfangreiche energiepolitische Ver{\"a}nderungen zur Folge hatte. Auf dieser Grundlage werden schließlich in einer denkmalkundlichen Reihenuntersuchung Windenergieanlagen herausgearbeitet, welche in hervorragender Weise von der Entwicklung zeugen. Die Auswahl bleibt allerdings mit sechs Objekten im Verh{\"a}ltnis zum Gesamtbestand von knapp 30.000 Anlagen relativ beschr{\"a}nkt, weil das auf die Abgrenzung von Besonderheiten ausgelegte etablierte Denkmalverst{\"a}ndnis bei einem zeitlich so dichten Bestand gleichartiger Bauwerke an eine Grenze kommt. Abschließend werden m{\"o}gliche Erhaltungsperspektiven sowie denkmaltheoretische und -praktische Schlussfolgerungen diskutiert. Dabei ist unbedingt ein Erhalt am Ursprungsstandort anzustreben, wobei im Einzelfall entschieden werden muss, ob Belange des Funktions- oder Substanzerhaltes h{\"o}her zu gewichten sind. Die skizzierten Auswahlprobleme regen dar{\"u}ber hinaus zur Diskussion zus{\"a}tzlicher denkbarer Bewertungskategorien an, wobei sich insbesondere die gesellschaftliche Wahrnehmung und {\"o}kologische Werte aufdr{\"a}ngen. Zudem kann f{\"u}r die st{\"a}rkere Ber{\"u}cksichtigung von Funktionszusammenh{\"a}ngen bei der Betrachtung technischer Infrastruktur in der Denkmalpflege pl{\"a}diert werden. Insgesamt f{\"u}hrt die denkmalkundliche Auseinandersetzung mit Windenergieanlagen damit weit {\"u}ber die Herausarbeitung einzelner Objekte hinaus und macht eindr{\"u}cklich auf aktuelle Herausforderungen der Denkmalpflege und dar{\"u}ber hinaus aufmerksam.}, subject = {Industriekultur}, language = {de} } @book{BrokowLogaEckardt2021, author = {Brokow-Loga, Anton and Eckardt, Frank}, title = {Stadtpolitik f{\"u}r alle}, publisher = {Graswurzelrevolution}, address = {Heidelberg}, doi = {10.25643/bauhaus-universitaet.4390}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210315-43904}, publisher = {Bauhaus-Universit{\"a}t Weimar}, pages = {68}, year = {2021}, abstract = {Die Corona-Krise hat die Erosion st{\"a}dtischer Solidarit{\"a}t offen zu Tage treten lassen. Dagegen bringen Anton Brokow-Loga und Frank Eckardt in dieser Schrift die praktische Utopie einer solidarischen Postwachstumsstadt „auf den Punkt". Vom Commoning {\"u}ber die Umverteilung der st{\"a}dtischen Fl{\"a}chen bis zu einer sozial-{\"o}kologischen Verkehrswende: Eine progressive Stadtpolitik f{\"u}r alle {\"u}berwindet bisheriges Schubladendenken. Sie setzt stattdessen auf heterogene Zusammenh{\"a}nge und ungew{\"o}hnliche B{\"u}ndnisse. Zu dem hier umrissenen Vorhaben geh{\"o}rt auch, eine basisdemokratisch orientierte Stadtpolitik mit dem Ziel einer umfassenden Transformation von Stadt und Gesellschaft zu verkn{\"u}pfen. Wie kann ein Blick auf die kommunale Ebene helfen, globalen Ungerechtigkeiten zu begegnen? Welchen Weg weisen munizipalistische Plattformen und Vergemeinschaftungen jenseits von Privat- oder Staatseigentum?}, subject = {Transformation}, language = {de} } @article{BuschowPosslerScheper, author = {Buschow, Christopher and Possler, Daniel and Scheper, Jule}, title = {Teaching Media Entrepreneurship: How A Start-up Simulation Can Increase Students' Knowledge and Encourage Them to Work in Entrepreneurial Contexts}, series = {Teaching Journalism and Mass Communication}, volume = {2021}, journal = {Teaching Journalism and Mass Communication}, number = {Volume 11, Nr. 1}, publisher = {Small Programs Interest Group}, doi = {10.25643/bauhaus-universitaet.4462}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210729-44628}, pages = {65 -- 69}, abstract = {Entrepreneurship and start-up activities are seen as a key response to recent upheavals in the media industry: Newly founded ventures can act as important drivers for industry transformation and renewal, pioneering new products, business models, and organizational designs (e.g. Achtenhagen, 2017; Buschow \& Laugemann, 2020). In principle, media students represent a crucial population of nascent entrepreneurs: individuals who will likely become founders of start-ups (Casero-Ripoll{\´e}s et al., 2016). However, their willingness to start a new business is generally considered to be rather low (Goyanes, 2015), and for journalism students, the idea of innovation tends to be conservative, following traditional norms and professional standards (Singer \& Broersma, 2020). In a sample of Spanish journalism students, L{\´o}pez-Meri et al. (2020) found that one of the main barriers to entrepreneurial intentions is that students feel they lack knowledge and training in entrepreneurship. In the last 10 years, a wide variety of entrepreneurship education courses have been set up in media departments of colleges and universities worldwide. These programs have been designed to sensitize and prepare communications, media and journalism students to think and act entrepreneurially (e.g. Caplan et al., 2020; Ferrier, 2013; Ferrier \& Mays, 2017; Hunter \& Nel, 2011). Entrepreneurial competencies and practices not only play a crucial role for start-ups, but, in imes of digital transformation, are increasingly sought after by legacy media companies as well (K{\"u}ng, 2015). At the Department of Journalism and Communication Research, Hanover University of Music, Drama and Media, Germany, we have been addressing these developments with the "Media Entrepreneurship" program. The course, established in 2013, aims to provide fundamental knowledge of entrepreneurship, as well as promoting students' entrepreneurial thinking and behavior. This article presents the pedagogical approach of the program and investigates learning outcomes. By outlining and evaluating the Media Entrepreneurship program, this article aims to promote good practices of entrepreneurship education in communications, media and journalism, and to reflect on the limitations of such programs.}, subject = {Medienwirtschaft}, language = {en} } @article{CappachionePartschefeldOsburgetal., author = {Cappachione, Clotilde and Partschefeld, Stephan and Osburg, Andrea and Gliubizzi, Rocco and Gaeta, Carmine}, title = {Modified Carboxymethylcellulose-Based Scaffolds as New Potential Ecofriendly Superplasticizers with a Retardant Effect for Mortar: From the Synthesis to the Application}, series = {Materials}, volume = {2021}, journal = {Materials}, number = {volume 14, issue 13, article 3569}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ma14133569}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44689}, pages = {1 -- 17}, abstract = {This article is focused on the research and development of new cellulose ether derivatives as innovative superplasticizers for mortar systems. Several synthetic strategies have been pursued to obtain new compounds to study their properties on cementitious systems as new bio-based additives. The new water-soluble admixtures were synthesized using a complex carboxymethylcellulose-based backbone that was first hydrolyzed and then sulfo-ethylated in the presence of sodium vinyl sulphonate. Starting with a complex biopolymer that is widely known as a thickening agent was very challenging. Only by varying the hydrolysis times and temperatures of the reactions was achieved the aimed goal. The obtained derivatives showed different molecular weight (Mw) and anionic charges on their backbones. An improvement in shear stress and dynamic viscosity values of CEM II 42.5R cement was observed with the samples obtained with a longer time of higher temperature hydrolysis and sulfo-ethylation. Investigations into the chemical nature of the pore solution, calorimetric studies and adsorption experiments clearly showed the ability of carboxymethyl cellulose superplasticizer (CMC SP) to interact with cement grains and influence hydration processes within a 48-h time window, causing a delay in hydration reactions in the samples. The fluidity of the cementitious matrices was ascertained through slump test and preliminary studies of mechanical and flexural strength of the hardened mortar formulated with the new ecological additives yielded values in terms of mechanical properties. Finally, the computed tomography (CT) images completed the investigation of the pore network structure of hardened specimens, highlighting their promising structure porosity.}, subject = {M{\"o}rtel}, language = {en} } @phdthesis{Chawdhury, author = {Chawdhury, Samir}, title = {Partitioned Algorithms using Vortex Particle Methods for Fluid-Structure Interaction of Thin-walled Flexible Structures}, publisher = {arts + science weimar GmbH}, address = {Weimar}, isbn = {978-3-95773-297-2}, doi = {10.25643/bauhaus-universitaet.6404}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230703-64042}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {256}, abstract = {Structures under wind action can exhibit various aeroelastic interaction phenomena, which can lead to destructive and catastrophic events. Such unstable interaction can be beneficially used for small-scale aeroelastic energy harvesting. Proper understanding and prediction of fluid-structure interactions (FSI) phenomena are therefore crucial in many engineering fields. This research intends to develop coupled FSI models to extend the applicability of Vortex Particle Methods (VPM) for numerically analysing the complex FSI of thin-walled flexible structures under steady and fluctuating incoming flows. In this context, the flow around deforming thin bodies is analysed using the two-dimensional and pseudo-three-dimensional implementations of VPM. The structural behaviour is modelled and analysed using the Finite Element Method. The partitioned coupling approach is considered because of the flexibility of using different mathematical procedures for solving fluid and solid mechanics. The developed coupled models are validated with several benchmark FSI problems in the literature. Finally, the models are applied to several fundamental and application field of FSI problems of different thin-walled flexible structures irrespective of their size.}, subject = {Windenergie}, language = {en} } @inproceedings{Dokhanchi, author = {Dokhanchi, Najmeh Sadat}, title = {Reconstruction of the indoor air temperature distribution using acoustic travel-time tomography}, editor = {Arnold, J{\"o}rg}, doi = {10.25643/bauhaus-universitaet.4659}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220622-46593}, abstract = {Acoustic travel-time tomography (ATOM) is being increasingly considered recently as a remote sensing methodology to determine the indoor air temperatures distribution. It employs the relationship between the sound velocities along sound-paths and their related travel-times through measured room-impulse-response (RIR). Thus, the precise travel-time estimation is of critical importance which can be performed by applying an analysis time-window method. In this study, multiple analysis time-windows with different lengths are proposed to overcome the challenge of accurate detection of the travel-times at RIR. Hence, the ATOM-temperatures distribution has been measured at the climate chamber lab of the Bauhaus-University Weimar. As a benchmark, the temperatures of NTC thermistors are compared to the reconstructed temperatures derived from the ATOM technique illustrating this technique can be a reliable substitute for traditional thermal sensors. The numerical results indicate that the selection of an appropriate analysis time-window significantly enhances the accuracy of the reconstructed temperatures distribution.}, subject = {Bauphysik}, language = {en} } @periodical{DolffBonekaemperPaulusSellmannetal., author = {Dolff-Bonek{\"a}mper, Gabi and Paulus, J{\"o}rg and Sellmann, Annika and Vogel, Carolin and Bargholz, Ortrun and Herrmann, Moritz Peter and L{\"o}ffler, Beate and Kretschmann, Schirin and Lotter, Stefanie and Ehrenpreis, David and Bockelmann, Leo and Langner, Sigrun and Sch{\"o}nberger, Sonya and Majdzadeh, Bahar}, title = {Collecting Loss}, editor = {Bogner, Simone and Dolff-Bonek{\"a}mper, Gabi and Meier, Hans-Rudolf}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Ilmtal-Weinstraße}, doi = {10.25643/bauhaus-universitaet.4321}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201221-43217}, pages = {168}, abstract = {Wer sich mit "Identit{\"a}t" und "Erbe" befasst, also mit dem Zusammenhang zwischen der Konstituierung und Stabilit{\"a}t von Gemeinwesen und dem Bewahren von G{\"u}tern, Orten und {\"U}berlieferungen, kommt nicht umhin, sich auch mit Verlusten zu befassen. Verlust bezeichnet hier nicht die Abwesenheit eines Gutes, das Erbe war oder h{\"a}tte werden k{\"o}nnen, sondern die soziale Beziehung zu dem verlorenen Gut und zu den Umst{\"a}nden seines Verlorengehens oder auch den Versuchen, es wiederzugewinnen.}, subject = {Verlust}, language = {mul} } @article{EhlersGrimmerStracketal., author = {Ehlers, Jan and Grimmer, Janine and Strack, Veronika and Huckauf, Anke}, title = {The influence of sham feedback on physiological processing during fear-driven stimulation}, series = {PLOS ONE}, journal = {PLOS ONE}, number = {Volume 16, issue 5, article e0251211}, publisher = {PLOS}, address = {San Francisco, Calif.}, doi = {10.1371/journal.pone.0251211}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210510-44249}, pages = {1 -- 17}, abstract = {Biofeedback constitutes a well-established, non-invasive method to voluntary interfere in emotional processing by means of cognitive strategies. However, treatment durations exhibit strong inter-individual variations and first successes can often be achieved only after a large number of sessions. Sham feedback constitutes a rather untapped approach by providing feedback that does not correspond to the participant's actual state. The current study aims to gain insights into mechanisms of sham feedback processing in order to support new techniques in biofeedback therapy. We carried out two experiments and applied different types of sham feedback on skin conductance responses and pupil size changes during affective processing. Results indicate that standardized but context-sensitive sham signals based on skin conductance responses exert a stronger influence on emotional regulation compared to individual sham feedback from ongoing pupil dynamics. Also, sham feedback should forego unnatural signal behavior to avoid irritation and skepticism among participants. Altogether, a reasonable combination of stimulus features and sham feedback characteristics enables to considerably reduce the actual bodily responsiveness already within a single session.}, subject = {Biofeedback}, language = {en} } @phdthesis{Fauth, author = {Fauth, Judith}, title = {Ein handlungsorientiertes Entscheidungsmodell zur Feststellung der Genehmigungsf{\"a}higkeit von Bauvorhaben}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Ilmtal-Weinstraße}, isbn = {978-3-95773-299-6}, doi = {10.25643/bauhaus-universitaet.4509}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210928-45093}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {318}, abstract = {Die Auseinandersetzung mit der Digitalisierung ist in den letzten Jahren in den Medien, auf Konferenzen und in Aussch{\"u}ssen der Bau- und Immobilienbranche angekommen. W{\"a}hrend manche Bereiche Neuerungen hervorbringen und einige Akteure als Pioniere zu bezeichnen sind, weisen andere Themen noch Defizite hinsichtlich der digitalen Transformation auf. Zu dieser Kategorie kann auch das Baugenehmigungsverfahren gez{\"a}hlt werden. Unabh{\"a}ngig davon, wie Architekten und Ingenieure in den Planungsb{\"u}ros auf innovative Methoden setzen, bleiben die Bauvorlagen bisher zuhauf in Papierform oder werden nach der elektronischen Einreichung in der Beh{\"o}rde ausgedruckt. Vorhandene Ressourcen, beispielsweise in Form eines Bauwerksinformationsmodells, die Unterst{\"u}tzung bei der Baugenehmigungsfeststellung bieten k{\"o}nnen, werden nicht ausgesch{\"o}pft. Um mit digitalen Werkzeugen eine Entscheidungshilfe f{\"u}r die Baugenehmigungsbeh{\"o}rden zu erarbeiten, ist es notwendig, den Ist-Zustand zu verstehen und Gegebenheiten zu hinterfragen, bevor eine Gesamtautomatisierung der innerbeh{\"o}rdlichen Vorg{\"a}nge als alleinige L{\"o}sung zu verfolgen ist. Mit einer inhaltlich-organisatorischen Betrachtung der relevanten Bereiche, die Einfluss auf die Baugenehmigungsfeststellung nehmen, wird eine Optimierung des Baugenehmigungsverfahrens in den Beh{\"o}rden angestrebt. Es werden die komplexen Bereiche, wie die Gesetzeslage, der Einsatz von Technologie aber auch die subjektiven Handlungsalternativen, ermittelt und strukturiert. Mit der Entwicklung eines Modells zur Feststellung der Baugenehmigungsf{\"a}higkeit wird sowohl ein Verst{\"a}ndnis f{\"u}r Einflussfaktoren vermittelt als auch eine Transparenzsteigerung f{\"u}r alle Beteiligten geschaffen. Neben einer internationalen Literaturrecherche diente eine empirische Studie als Untersuchungsmethode. Die empirische Studie wurde in Form von qualitativen Experteninterviews durchgef{\"u}hrt, um den Ist-Zustand im Bereich der Baugenehmigungsverfahren festzustellen. Das erhobene Datenmaterial wurde aufbereitet und anschließend einer softwaregest{\"u}tzten Inhaltsanalyse unterzogen. Die Ergebnisse wurden in Kombination mit den Erkenntnissen der Literaturrecherche in verschiedenen Analysen als Modellgrundlage aufgearbeitet. Ergebnis der Untersuchung stellt ein Entscheidungsmodell dar, welches eine L{\"u}cke zwischen den gegenw{\"a}rtigen Abl{\"a}ufen in den Baubeh{\"o}rden und einer Gesamtautomatisierung der Baugenehmigungspr{\"u}fung schließt. Die prozessorientierte Strukturierung entscheidungsrelevanter Sachverhalte im Modell erm{\"o}glicht eine Unterst{\"u}tzung bei der Baugenehmigungsfeststellung f{\"u}r Pr{\"u}fer und Antragsteller. Das theoretische Modell konnte in Form einer Webanwendung in die Praxis {\"u}bertragen werden.}, subject = {Baugenehmigung}, language = {de} } @phdthesis{Fauth, author = {Fauth, Judith}, title = {A process-oriented decision model for determining the permitability of construction projects}, doi = {10.25643/bauhaus-universitaet.4602}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220309-46020}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {325}, abstract = {In recent years, the discussion of digitalization has arrived in the media, at conferences, and in committees of the construction and real estate industry. While some areas are producing innovations and some contributors can be described as pioneers, other topics still show deficits with regard to digital transformation. The building permit process can also be counted in this category. Regardless of how architects and engineers in planning offices rely on innovative methods, building documents have so far remained in paper form in too many cases, or are printed out after electronic submission to the authority. Existing resources - for example in the form of a building information model, which could provide support in the building permit process - are not being taken advantage of. In order to use digital tools to support decision-making by the building permit authorities, it is necessary to understand the current situation and to question conditions before pursuing the overall automation of internal authority processes as the sole solution. With a substantive-organizational consideration of the relevant areas that influence building permit determination, an improvement of the building permit procedure within authorities is proposed. Complex areas - such as legal situations, the use of technology, as well as the subjective alternative action - are determined and structured. With the development of a model for the determination of building permitability, both an understanding of influencing factors is conveyed and an increase in transparency for all parties involved is created. In addition to an international literature review, an empirical study served as the research method. The empirical study was conducted in the form of qualitative expert interviews in order to determine the current state in the field of building permit procedures. The collected data material was processed and subsequently subjected to a software-supported content analysis. The results were processed, in combination with findings from the literature review, in various analyses to form the basis for a proposed model. The result of the study is a decision model that closes the gap between the current processes within the building authorities and an overall automation of the building permit review process. The model offers support to examiners and applicants in determining building permit eligibility, through its process-oriented structuring of decision-relevant facts. The theoretical model could be transferred into practice in the form of a web application.}, subject = {Baugenehmigung}, language = {en} } @phdthesis{Foka, author = {Foka, Zinovia}, title = {The Space In-Between. Tracing Transformative Processes in Nicosia's Buffer Zone.}, doi = {10.25643/bauhaus-universitaet.4444}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210531-44447}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {266}, abstract = {This thesis examines urban partition in Nicosia, the capital of Cyprus, and how its changing roles and shifting perceptions in a post-conflict setting reflect power relations, and their constant renegotiation. Nicosia, the capital of Cyprus, was officially divided in 1974 in the aftermath of an eighteen-year-long conflict between the island's Turkish- and Greek-Cypriot communities. As a result, a heavily militarized Buffer Zone, established as an emergency measure against perpetuation of intercommunal violence, has been cutting through its historic centre ever since. This thesis departs from a genuine interest in the material and ideational dimensions of urban partition. How is it constructed, not merely in physical terms but in the minds of the societies affected by conflict? How is it established in official and everyday discourses? What kinds of mechanisms have been developed to maintain it, and make an inseparable part of the urban experience? Moreover, taking into account the consensus in relevant literature pertaining to the imperative for its removal, this thesis is inquiring into the relevance of peace agreements to overcoming urban partition. For this purpose, it also looks at narratives and practices that have attempted to contest it. The examples examined in this thesis offer pregnant analytical moments to understand Nicosia's Buffer Zone as a dynamic social construct, accommodating multiple visions of and for the city. Its space 'in-between' facilitates encounters between various actors, accommodates new meanings, socio-spatial practices and diverse imaginaries. In this sense, urban partition is explored in this thesis as a phenomenon that transcends scales as well as temporalities, entwining past, present, and future.}, subject = {Stadtforschung}, language = {en} } @phdthesis{Goswami, author = {Goswami, Somdatta}, title = {Phase field modeling of fracture with isogeometric analysis and machine learning methods}, doi = {10.25643/bauhaus-universitaet.4384}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210304-43841}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {168}, abstract = {This thesis presents the advances and applications of phase field modeling in fracture analysis. In this approach, the sharp crack surface topology in a solid is approximated by a diffusive crack zone governed by a scalar auxiliary variable. The uniqueness of phase field modeling is that the crack paths are automatically determined as part of the solution and no interface tracking is required. The damage parameter varies continuously over the domain. But this flexibility comes with associated difficulties: (1) a very fine spatial discretization is required to represent sharp local gradients correctly; (2) fine discretization results in high computational cost; (3) computation of higher-order derivatives for improved convergence rates and (4) curse of dimensionality in conventional numerical integration techniques. As a consequence, the practical applicability of phase field models is severely limited. The research presented in this thesis addresses the difficulties of the conventional numerical integration techniques for phase field modeling in quasi-static brittle fracture analysis. The first method relies on polynomial splines over hierarchical T-meshes (PHT-splines) in the framework of isogeometric analysis (IGA). An adaptive h-refinement scheme is developed based on the variational energy formulation of phase field modeling. The fourth-order phase field model provides increased regularity in the exact solution of the phase field equation and improved convergence rates for numerical solutions on a coarser discretization, compared to the second-order model. However, second-order derivatives of the phase field are required in the fourth-order model. Hence, at least a minimum of C1 continuous basis functions are essential, which is achieved using hierarchical cubic B-splines in IGA. PHT-splines enable the refinement to remain local at singularities and high gradients, consequently reducing the computational cost greatly. Unfortunately, when modeling complex geometries, multiple parameter spaces (patches) are joined together to describe the physical domain and there is typically a loss of continuity at the patch boundaries. This decrease of smoothness is dictated by the geometry description, where C0 parameterizations are normally used to deal with kinks and corners in the domain. Hence, the application of the fourth-order model is severely restricted. To overcome the high computational cost for the second-order model, we develop a dual-mesh adaptive h-refinement approach. This approach uses a coarser discretization for the elastic field and a finer discretization for the phase field. Independent refinement strategies have been used for each field. The next contribution is based on physics informed deep neural networks. The network is trained based on the minimization of the variational energy of the system described by general non-linear partial differential equations while respecting any given law of physics, hence the name physics informed neural network (PINN). The developed approach needs only a set of points to define the geometry, contrary to the conventional mesh-based discretization techniques. The concept of `transfer learning' is integrated with the developed PINN approach to improve the computational efficiency of the network at each displacement step. This approach allows a numerically stable crack growth even with larger displacement steps. An adaptive h-refinement scheme based on the generation of more quadrature points in the damage zone is developed in this framework. For all the developed methods, displacement-controlled loading is considered. The accuracy and the efficiency of both methods are studied numerically showing that the developed methods are powerful and computationally efficient tools for accurately predicting fractures.}, subject = {Phasenfeldmodell}, language = {en} } @phdthesis{Gruender, author = {Gr{\"u}nder, Anika}, title = {Denkmalzug{\"a}nge zwischen Abgrenzen, Genießen, Erinnern und Teilhaben}, doi = {10.25643/bauhaus-universitaet.4456}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210628-44569}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {349}, abstract = {Die interdisziplin{\"a}re Dissertationsschrift l{\"a}sst sich im Horizont internationaler Forschungen zu Denkmalwerten, neuer Ans{\"a}tze in der Kultur- und Wissensvermittlung rund um Baudenkmale sowie k{\"u}nstlerisch- ethnographischem Forschen an und mit Denkmalen verorten. Der erste Teil der Arbeit widmet sich Denkmalen und der Denkmalpflege im Kontext k{\"u}nstlerischer und sozialwissenschaftlicher Allianzen. Ausgangspunkt ist die Feststellung, dass die Denkmalpflege zwar sehr vieles {\"u}ber Denkmale weiß, aber kaum etwas {\"u}ber deren Rezeption beim breiten Publikum. Im Mittelpunkt steht die Frage, wie hier Praktiken der bildenden Kunst und Arbeitsweisen der Kulturanthropologie die Disziplin der Denkmalpflege bereichern k{\"o}nnen, oder sogar m{\"u}ssen. Den zweiten Teil bildet eine empirische Studie, in der die popul{\"a}re Wahrnehmung von Denkmalen qualitativ erforscht wird. Das Schloss und Rittergut Bedheim im s{\"u}dlichen l{\"a}ndlichen Th{\"u}ringen dient dabei als konkreter Untersuchungsort. Reaktionen von Besucherinnen und Besuchern werden mit Hilfe von drei k{\"u}nstlerischen Eingriffen angeregt und diese dann ethnographisch-offen dokumentiert und ausgewertet. Auf dieser Basis werden Zug{\"a}nge zum Denkmal ermittelt. W{\"a}hrend die meisten BesucherInnen das Denkmal als „Arbeit" wahrnehmen, geraten einige ins „Tr{\"a}umen" oder „Erinnern", man „genießt" das Ensemble als authentische und {\"a}sthetische Ressource, oder findet Zugang {\"u}ber das spontane „Erkl{\"a}ren" baukonstruktiver oder baulicher Situationen. F{\"u}r andere bedeutet der Besuch die „Teilhabe" an einem Prozess. Schloss Bedheim wird als Ort stetiger Ver{\"a}nderung gesch{\"a}tzt. In der Wahrnehmung der BesucherInnen verquicken sich Aspekte des Bewunderns mit solchen des Abgrenzens. Die eigene Alltagswelt und das eigene Zuhause bilden hierbei Bezugspunkte. Schloss Bedheim wird auf diese Weise zum Imaginationsraum, zur Energietankstelle und zur gern besuchten Problemwelt. Die Ergebnisse der Arbeit liegen in zwei Erkenntnisfeldern: Auf einer methodischen Ebene zeigt sie, wie in der Denkmalpflege vertiefte Fachlichkeit mit einer tats{\"a}chlichen Kontaktaufnahme mit dem Publikum verbunden werden kann und damit soziale Gef{\"u}ge an Baudenkmalen qualitativ ermittelt werden k{\"o}nnen. Ebenso wird deutlich, dass k{\"u}nstlerische Eingriffe Ausl{\"o}ser von Gespr{\"a}chen sind, als Kontaktfl{\"a}chen zur Alltagswelt dienen und so zu einer vielf{\"a}ltigen Auseinandersetzung mit Denkmalen f{\"u}hren. Auf einer inhaltlichen Ebene liefert die Arbeit Erkenntnisse zu Wahrnehmungsweisen von Denkmalen. Neben den erw{\"a}hnten Zug{\"a}ngen, wird die Existenz und Bedeutung einer regional vernetzten Wahrnehmung von Denkmalen aufgedeckt. Des Weiteren zeigen die Ergebnisse, dass das {\"O}ffnen von Baudenkmalen als und im Prozess ungenutzte Potentiale birgt und es wird angeregt, dies in zuk{\"u}nftigen denkmalpflegerischen Konzepten eine gr{\"o}ßere Rolle spielen zu lassen. Die Vision eines „Kompendiums der Zug{\"a}nge" wird entwickelt, mit dessen Hilfe sich ein enormes Wissen {\"u}ber Rollen und Bedeutungen die Baudenkmale in unserer Gesellschaft spielen, sammeln ließe.}, subject = {Denkmalpflege}, language = {de} } @phdthesis{Harirchian, author = {Harirchian, Ehsan}, title = {Improved Rapid Assessment of Earthquake Hazard Safety of Existing Buildings Using a Hierarchical Type-2 Fuzzy Logic Model}, doi = {10.25643/bauhaus-universitaet.4396}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210326-43963}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {143}, abstract = {Although it is impractical to avert subsequent natural disasters, advances in simulation science and seismological studies make it possible to lessen the catastrophic damage. There currently exists in many urban areas a large number of structures, which are prone to damage by earthquakes. These were constructed without the guidance of a national seismic code, either before it existed or before it was enforced. For instance, in Istanbul, Turkey, as a high seismic area, around 90\% of buildings are substandard, which can be generalized into other earthquakeprone regions in Turkey. The reliability of this building stock resulting from earthquake-induced collapse is currently uncertain. Nonetheless, it is also not feasible to perform a detailed seismic vulnerability analysis on each building as a solution to the scenario, as it will be too complicated and expensive. This indicates the necessity of a reliable, rapid, and computationally easy method for seismic vulnerability assessment, commonly known as Rapid Visual Screening (RVS). In RVS methodology, an observational survey of buildings is performed, and according to the data collected during the visual inspection, a structural score is calculated without performing any structural calculations to determine the expected damage of a building and whether the building needs detailed assessment. Although this method might save time and resources due to the subjective/qualitative judgments of experts who performed the inspection, the evaluation process is dominated by vagueness and uncertainties, where the vagueness can be handled adequately through the fuzzy set theory but do not cover all sort of uncertainties due to its crisp membership functions. In this study, a novel method of rapid visual hazard safety assessment of buildings against earthquake is introduced in which an interval type-2 fuzzy logic system (IT2FLS) is used to cover uncertainties. In addition, the proposed method provides the possibility to evaluate the earthquake risk of the building by considering factors related to the building importance and exposure. A smartphone app prototype of the method has been introduced. For validation of the proposed method, two case studies have been selected, and the result of the analysis presents the robust efficiency of the proposed method.}, subject = {Fuzzy-Logik}, language = {en} } @article{HarirchianKumariJadhavetal., author = {Harirchian, Ehsan and Kumari, Vandana and Jadhav, Kirti and Rasulzade, Shahla and Lahmer, Tom and Raj Das, Rohan}, title = {A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings}, series = {Applied Sciences}, volume = {2021}, journal = {Applied Sciences}, number = {Volume 11, issue 16, article 7540}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app11167540}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210818-44853}, pages = {1 -- 33}, abstract = {A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings' present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings.}, subject = {Maschinelles Lernen}, language = {en} } @phdthesis{Hoerold, author = {H{\"o}rold, Stefan}, title = {Leistungsbezogene Musterjahresganglinien f{\"u}r den Straßenbetriebsdienst}, doi = {10.25643/bauhaus-universitaet.4491}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210830-44910}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {124}, abstract = {In den letzten Jahrzehnten unterlag der Straßenbetriebsdienst tiefgreifenden Ver{\"a}nderungen. Diese Ver{\"a}nderungen schließt auch die betriebliche Steuerungsphilosophie ein, um eine planungsrationale und {\"o}konomische Gestaltung des Straßenbetriebsdienstes zu unterst{\"u}tzen. Dabei erfolgt eine verbindliche Vorgabe der Leistungsinhalte und -umf{\"a}nge und erm{\"o}glicht eine Budgetierung f{\"u}r das vorgesehene Jahresarbeitsprogramm. Ziel der Untersuchung ist die Entwicklung eines Modells f{\"u}r die Ermittlung von leistungsbezogenen Musterjahresganglinien zur Unterst{\"u}tzung der Jahresarbeitsplanung. Daf{\"u}r lagen f{\"u}r jede Leistung des Leistungsbereiches „Gr{\"u}npflege" jeweils 260 einzelne Jahresganglinien vor. Im Ergebnis der Untersuchung wird die leistungsbezogene Musterjahresganglinie in vier Schritten ermittelt. Im ersten Schritt erfolgt die Pr{\"u}fung der Datenqualit{\"a}t; im zweiten Schritt eine Korrelationsanalyse; im dritten Schritt die fachliche {\"U}berpr{\"u}fung der Leistungsauspr{\"a}gung und im vierten Schritt die Ermittlung der leistungsbezogenen Musterjahresganglinie aus den verbliebenen leistungsbezogenen Jahresganglinien.}, subject = {Straßenbetriebsdienst}, language = {de} } @article{IbanezKraus, author = {Ibanez, Stalin and Kraus, Matthias}, title = {A Numerical Approach for Plastic Cross Cross-Sectional Analyses of Steel Members}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1527}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45622}, pages = {2098 -- 2106}, abstract = {Global structural analyses in civil engineering are usually performed considering linear-elastic material behavior. However, for steel structures, a certain degree of plasticization depending on the member classification may be considered. Corresponding plastic analyses taking material nonlinearities into account are effectively realized using numerical methods. Frequently applied finite elements of two and three-dimensional models evaluate the plasticity at defined nodes using a yield surface, i.e. by a yield condition, hardening rule, and flow rule. Corresponding calculations are connected to a large numerical as well as time-consuming effort and they do not rely on the theoretical background of beam theory, to which the regulations of standards mainly correspond. For that reason, methods using beam elements (one-dimensional) combined with cross-sectional analyses are commonly applied for steel members in terms of plastic zones theories. In these approaches, plasticization is in general assessed by means of axial stress only. In this paper, more precise numerical representation of the combined stress states, i.e. axial and shear stresses, is presented and results of the proposed approach are validated and discussed.}, subject = {Stahlkonstruktion}, language = {en} } @article{JiangRoesslerWellmannetal., author = {Jiang, Mingze and R{\"o}ßler, Christiane and Wellmann, Eva and Klaver, Jop and Kleiner, Florian and Schmatz, Joyce}, title = {Workflow for high-resolution phase segmentation of cement clinker fromcombined BSE image and EDX spectral data}, series = {Journal of Microscopy}, volume = {2021}, journal = {Journal of Microscopy}, publisher = {Wiley-Blackwell}, address = {Oxford}, doi = {10.1111/jmi.13072}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211215-45449}, pages = {1 -- 7}, abstract = {Burning of clinker is the most influencing step of cement quality during the production process. Appropriate characterisation for quality control and decision-making is therefore the critical point to maintain a stable production but also for the development of alternative cements. Scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX) delivers spatially resolved phase and chemical information for cement clinker. This data can be used to quantify phase fractions and chemical composition of identified phases. The contribution aims to provide an overview of phase fraction quantification by semi-automatic phase segmentation using high-resolution backscattered electron (BSE) images and lower-resolved EDX element maps. Therefore, a tool for image analysis was developed that uses state-of-the-art algorithms for pixel-wise image segmentation and labelling in combination with a decision tree that allows searching for specific clinker phases. Results show that this tool can be applied to segment sub-micron scale clinker phases and to get a quantification of all phase fractions. In addition, statistical evaluation of the data is implemented within the tool to reveal whether the imaged area is representative for all clinker phases.}, subject = {Zementklinker}, language = {en} } @phdthesis{KhademiZahedi, author = {Khademi Zahedi, Reza}, title = {Stress Distribution in Buried Defective PE Pipes and Crack Propagation in Nanosheets}, doi = {10.25643/bauhaus-universitaet.4481}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210803-44814}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {235}, abstract = {Buried PE pipelines are the main choice for transporting hazardous hydrocarbon fluids and are used in urban gas distribution networks. Molecular dynamics (MD) simulations used to investigate material behavior at nanoscale.}, subject = {Gasleitung}, language = {en} } @unpublished{KhosraviSheikhKhozaniCooper, author = {Khosravi, Khabat and Sheikh Khozani, Zohreh and Cooper, James R.}, title = {Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms}, volume = {2021}, doi = {10.25643/bauhaus-universitaet.4499}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211004-44998}, abstract = {Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPSIBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking.}, subject = {Maschinelles Lernen}, language = {en} } @unpublished{KhosraviSheikhKhozaniMao, author = {Khosravi, Khabat and Sheikh Khozani, Zohreh and Mao, Luka}, title = {A comparison between advanced hybrid machine learning algorithms and empirical equations applied to abutment scour depth prediction}, doi = {10.25643/bauhaus-universitaet.4388}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210311-43889}, pages = {43}, abstract = {Complex vortex flow patterns around bridge piers, especially during floods, cause scour process that can result in the failure of foundations. Abutment scour is a complex three-dimensional phenomenon that is difficult to predict especially with traditional formulas obtained using empirical approaches such as regressions. This paper presents a test of a standalone Kstar model with five novel hybrid algorithm of bagging (BA-Kstar), dagging (DA-Kstar), random committee (RC-Kstar), random subspace (RS-Kstar), and weighted instance handler wrapper (WIHWKstar) to predict scour depth (ds) for clear water condition. The dataset consists of 99 scour depth data from flume experiments (Dey and Barbhuiya, 2005) using abutment shapes such as vertical, semicircular and 45◦ wing. Four dimensionless parameter of relative flow depth (h/l), excess abutment Froude number (Fe), relative sediment size (d50/l) and relative submergence (d50/h) were considered for the prediction of relative scour depth (ds/l). A portion of the dataset was used for the calibration (70\%), and the remaining used for model validation. Pearson correlation coefficients helped deciding relevance of the input parameters combination and finally four different combinations of input parameters were used. The performance of the models was assessed visually and with quantitative metrics. Overall, the best input combination for vertical abutment shape is the combination of Fe, d50/l and h/l, while for semicircular and 45◦ wing the combination of the Fe and d50/l is the most effective input parameter combination. Our results show that incorporating Fe, d50/l and h/l lead to higher performance while involving d50/h reduced the models prediction power for vertical abutment shape and for semicircular and 45◦ wing involving h/l and d50/h lead to more error. The WIHW-Kstar provided the highest performance in scour depth prediction around vertical abutment shape while RC-Kstar model outperform of other models for scour depth prediction around semicircular and 45◦ wing.}, subject = {maschinelles Lernen}, language = {en} } @article{Kleiner, author = {Kleiner, Florian}, title = {Optimization and semi-automatic evaluation of a frosting process for a soda lime silicate glass based on phosphoric acid}, series = {International Journal of Applied Glass Science}, journal = {International Journal of Applied Glass Science}, publisher = {John Wiley \& Sons}, doi = {10.1111/ijag.15866}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210701-44548}, pages = {1 -- 8}, abstract = {Chemical glass frosting processes are widely used to create visual attractive glass surfaces. A commonly used frosting bath mainly contains ammonium bifluoride (NH4HF2) mixed with hydrochloric acid (HCl). The frosting process consists of several baths. Firstly, the preliminary bath to clean the object. Secondly, the frosting bath which etches the rough light scattering structure into the glass surface. Finally, the washing baths to clean the frosted object. This is where the constituents of the preceding steps accumulate and have to be filtered from the sewage. In the present contribution, phosphoric acid (H3PO4) was used as a substitute for HCl to reduce the amount of ammonium (NH4+) and chloride (Cl-) dissolved in the waste water. In combination with magnesium carbonate (MgCO3), it allows the precipitation of ammonium within the sewage as ammonium magnesium phosphate (MgNH4PO4). However, a trivial replacement of HCl by H3PO4 within the frosting process causes extensive frosting errors, such as inhomogeneous size distributions of the structures or domains that are not fully covered by these structures. By modifying the preliminary bath composition, it was possible to improve the frosting result considerably. To determine the optimal composition of the preliminary bath, a semi-automatic evaluation method has been developed. This method renders the objective comparison of the resulting surface quality possible.}, subject = {Silicatglas}, language = {en} } @inproceedings{KleinerRoessler, author = {Kleiner, Florian and R{\"o}ßler, Christiane}, title = {Utilizing Modern FIB/SEM Technology and EDS for 3D Imaging of Hydrated Alite and its Pore Space}, series = {ERICA-CASH II Final Converence}, booktitle = {ERICA-CASH II Final Converence}, doi = {10.25643/bauhaus-universitaet.4455}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210702-44555}, pages = {2}, abstract = {The exploration of cementitious materials using scanning electron microscopes (SEM) is mainly done using fractured or polished surfaces. This leads to high-resolution 2D-images that can be combined using EDX and EBSD to unveil details of the microstructure and composition of materials. Nevertheless, this does not provide a quantitative insight into the three-dimensional fine structure of for example C-S-H phases. The focused ion beam (FIB) technology can cut a block of material in thin layers of less than 10 nm. This gives us a volume of 1000 μm³ with a voxel resolution of down to 4 x 4 x 10 nm³. The results can be combined with simultaneously acquired EDX data to improve image segmentation. Results of the investigation demonstrate that it is possible to obtain close-to-native 3D-visualisation of the spatial distribution of unreacted C3S, C-S-H and CH. Additionally, an optimized preparation method allows us to quantify the fine structure of C-S-H phases (length, aspect ratio, …) and the pore space.}, subject = {Rasterelektronenmikroskop}, language = {en} } @article{KleinerRoesslerVogtetal., author = {Kleiner, Florian and R{\"o}ßler, Christiane and Vogt, Franziska and Osburg, Andrea and Ludwig, Horst-Michael}, title = {Reconstruction of calcium silicate hydrates using multiple 2D and 3D imaging techniques: Light microscopy, μ-CT, SEM, FIB-nT combined with EDX}, series = {Journal of Microscopy}, volume = {2021}, journal = {Journal of Microscopy}, publisher = {John Wiley \& Sons Ltd}, address = {Oxford}, doi = {10.1111/jmi.13081}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45458}, pages = {1 -- 6}, abstract = {This study demonstrates the application and combination of multiple imaging techniques [light microscopy, micro-X-ray computer tomography (μ-CT), scanning electron microscopy (SEM) and focussed ion beam - nano-tomography (FIB-nT)] to the analysis of the microstructure of hydrated alite across multiple scales. However, by comparing findings with mercury intrusion porosimetry (MIP), it becomes obvious that the imaged 3D volumes and 2D images do not sufficiently overlap at certain scales to allow a continuous quantification of the pore size distribution (PSD). This can be overcome by improving the resolution and increasing the measured volume. Furthermore, results show that the fibrous morphology of calcium-silicate-hydrates (C-S-H) phases is preserved during FIB-nT. This is a requirement for characterisation of nano-scale porosity. Finally, it was proven that the combination of FIB-nT with energy-dispersive X-ray spectroscopy (EDX) data facilitates the phase segmentation of a 11 × 11 × 7.7 μm3 volume of hydrated alite.}, subject = {Zementklinker}, language = {en} } @article{KrausCrişanWittor, author = {Kraus, Matthias and Cri{\c{s}}an, Nicolae-Andrei and Wittor, Bj{\"o}rn}, title = {Stability Study of Cantilever-Beams - Numerical Analysis and Analytical Calculation (LTB)}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1539}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45637}, pages = {2199 -- 2206}, abstract = {According to Eurocode, the computation of bending strength for steel cantilever beams is a straightforward process. The approach is based on an Ayrton-Perry formula adaptation of buckling curves for steel members in compression, which involves the computation of an elastic critical buckling load for considering the instability. NCCI documents offer a simplified formula to determine the critical bending moment for cantilevers beams with symmetric cross-section. Besides the NCCI recommendations, other approaches, e.g. research literature or Finite-Element-Analysis, may be employed to determine critical buckling loads. However, in certain cases they render different results. Present paper summarizes and compares the abovementioned analytical and numerical approaches for determining critical loads and it exemplarily analyses corresponding cantilever beam capacities using numerical approaches based on plastic zones theory (GMNIA).}, subject = {Tr{\"a}ger}, language = {en} } @article{KrausKlausWittor, author = {Kraus, Matthias and Klaus, Martin and Wittor, Bj{\"o}rn}, title = {Experimental Analyses on the Resistance of Tapped Blind Holes}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1273}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45553}, pages = {141 -- 147}, abstract = {Bolted connections are commonly used in steel construction. The load-bearing behavior of bolt fittings has extensively been studied in various research activities and the bearing capacity of bolted connections can be assessed well by standard regulations for practical applications. With regard to tensile loading, the nut does not have strong influence on resistances, since the failure occurs in the bolts due to higher material strengths of the nuts. In some applications, so-called "blind holes" are used to connect plated components. In a manner of speaking, the nut is replaced by the "outer" plate with a prefabricated hole and thread, in which the bolt can be screwed and tightened. In such connections, the limit load capacity cannot solely be assessed by the bolt resistance, since the threaded hole in the base material has strong influence on the structural behavior. In this context, the available screw-in depth of the blind hole is of fundamental importance. The German National Annex of EN 1993-1-8 provides information on a necessary depth in order to transfer the full tensile capacity of the bolt. However, some connections do not allow to fabricate such depths. In these cases, the capacity of the connection is unclear and not specified. In this paper, first experiments on corresponding connections with different screw-in depths are presented and compared to limit load capacities according to the standard.}, subject = {Gewinde}, language = {en} } @misc{Koenigshofen, author = {K{\"o}nigshofen, Max}, title = {Mahnmal oder Tanztempel? Das Funkhaus und seine Rolle in der Weimarer Clubkultur}, volume = {2021}, publisher = {Lucia Verlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.4437}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210603-44377}, pages = {40}, abstract = {Im S{\"u}dwesten Weimars befindet sich ein leerstehender Geb{\"a}udekomplex, der im Stadtraum heute unter dem Namen Funkhaus und vor allem f{\"u}r studentisch organisierte Partys bekannt ist. Doch das Geb{\"a}ude entstand urspr{\"u}nglich nicht als Radiostation, sondern zwischen 1937 und 1944 als Prestigeprojekt des nationalsozialistisch zugespitzten Nietzsche-Kults. Diese Projektarbeit beleuchtet anhand von Archivalien und Expertinneninterviews die Nutzungsgeschichte der ehemaligen »Nietzsche-Ged{\"a}chtnishalle« und wirft die Frage auf, ob und wie ein solcher NS-Bau als Partylocation genutzt werden kann.}, subject = {Funkhaus}, language = {de} } @article{LashkarAraKalantariSheikhKhozanietal., author = {Lashkar-Ara, Babak and Kalantari, Niloofar and Sheikh Khozani, Zohreh and Mosavi, Amir}, title = {Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel}, series = {Mathematics}, volume = {2021}, journal = {Mathematics}, number = {Volume 9, Issue 6, Article 596}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math9060596}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210504-44197}, pages = {15}, abstract = {One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.}, subject = {Maschinelles Lernen}, language = {en} } @article{LegatiukGuerlebeckHommel, author = {Legatiuk, Anastasiia and G{\"u}rlebeck, Klaus and Hommel, Angela}, title = {Estimates for the discrete fundamental solution of the discrete Laplace operator on a rectangular lattice}, series = {Mathematical Methods in the Applied Sciences}, volume = {2021}, journal = {Mathematical Methods in the Applied Sciences}, publisher = {Wiley}, address = {Chichester}, doi = {10.1002/mma.7747}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220209-45829}, pages = {1 -- 23}, abstract = {This paper presents numerical analysis of the discrete fundamental solution of the discrete Laplace operator on a rectangular lattice. Additionally, to provide estimates in interior and exterior domains, two different regularisations of the discrete fundamental solution are considered. Estimates for the absolute difference and lp-estimates are constructed for both regularisations. Thus, this work extends the classical results in the discrete potential theory to the case of a rectangular lattice and serves as a basis for future convergence analysis of the method of discrete potentials on rectangular lattices.}, subject = {diskrete Fourier-Transformation}, language = {en} } @article{Legatiuk, author = {Legatiuk, Dmitrii}, title = {Mathematical Modelling by Help of Category Theory: Models and Relations between Them}, series = {mathematics}, volume = {2021}, journal = {mathematics}, number = {volume 9, issue 16, article 1946}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math9161946}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210817-44844}, pages = {17}, abstract = {The growing complexity of modern practical problems puts high demand on mathematical modelling. Given that various models can be used for modelling one physical phenomenon, the role of model comparison and model choice is becoming particularly important. Methods for model comparison and model choice typically used in practical applications nowadays are computationbased, and thus time consuming and computationally costly. Therefore, it is necessary to develop other approaches to working abstractly, i.e., without computations, with mathematical models. An abstract description of mathematical models can be achieved by the help of abstract mathematics, implying formalisation of models and relations between them. In this paper, a category theory-based approach to mathematical modelling is proposed. In this way, mathematical models are formalised in the language of categories, relations between the models are formally defined and several practically relevant properties are introduced on the level of categories. Finally, an illustrative example is presented, underlying how the category-theory based approach can be used in practice. Further, all constructions presented in this paper are also discussed from a modelling point of view by making explicit the link to concrete modelling scenarios.}, subject = {Kategorientheorie}, language = {en} } @article{LegatiukWeiszPatrault, author = {Legatiuk, Dmitrii and Weisz-Patrault, Daniel}, title = {Coupling of Complex Function Theory and Finite Element Method for Crack Propagation Through Energetic Formulation: Conformal Mapping Approach and Reduction to a Riemann-Hilbert Problem}, series = {Computational Methods and Function Theory}, volume = {2021}, journal = {Computational Methods and Function Theory}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s40315-021-00403-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210805-44763}, pages = {1 -- 23}, abstract = {In this paper we present a theoretical background for a coupled analytical-numerical approach to model a crack propagation process in two-dimensional bounded domains. The goal of the coupled analytical-numerical approach is to obtain the correct solution behaviour near the crack tip by help of the analytical solution constructed by using tools of complex function theory and couple it continuously with the finite element solution in the region far from the singularity. In this way, crack propagation could be modelled without using remeshing. Possible directions of crack growth can be calculated through the minimization of the total energy composed of the potential energy and the dissipated energy based on the energy release rate. Within this setting, an analytical solution of a mixed boundary value problem based on complex analysis and conformal mapping techniques is presented in a circular region containing an arbitrary crack path. More precisely, the linear elastic problem is transformed into a Riemann-Hilbert problem in the unit disk for holomorphic functions. Utilising advantages of the analytical solution in the region near the crack tip, the total energy could be evaluated within short computation times for various crack kink angles and lengths leading to a potentially efficient way of computing the minimization procedure. To this end, the paper presents a general strategy of the new coupled approach for crack propagation modelling. Additionally, we also discuss obstacles in the way of practical realisation of this strategy.}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{List, author = {List, Eik}, title = {Design, Analysis, and Implementation of Symmetric-key (Authenticated) Ciphers}, doi = {10.25643/bauhaus-universitaet.4523}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211103-45235}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {258}, abstract = {Modern cryptography has become an often ubiquitous but essential part of our daily lives. Protocols for secure authentication and encryption protect our communication with various digital services, from private messaging, online shopping, to bank transactions or exchanging sensitive information. Those high-level protocols can naturally be only as secure as the authentication or encryption schemes underneath. Moreover, on a more detailed level, those schemes can also at best inherit the security of their underlying primitives. While widespread standards in modern symmetric-key cryptography, such as the Advanced Encryption Standard (AES), have shown to resist analysis until now, closer analysis and design of related primitives can deepen our understanding. The present thesis consists of two parts that portray six contributions: The first part considers block-cipher cryptanalysis of the round-reduced AES, the AES-based tweakable block cipher Kiasu-BC, and TNT. The second part studies the design, analysis, and implementation of provably secure authenticated encryption schemes. In general, cryptanalysis aims at finding distinguishable properties in the output distribution. Block ciphers are a core primitive of symmetric-key cryptography which are useful for the construction of various higher-level schemes, ranging from authentication, encryption, authenticated encryption up to integrity protection. Therefore, their analysis is crucial to secure cryptographic schemes at their lowest level. With rare exceptions, block-cipher cryptanalysis employs a systematic strategy of investigating known attack techniques. Modern proposals are expected to be evaluated against these techniques. The considerable effort for evaluation, however, demands efforts not only from the designers but also from external sources. The Advanced Encryption Standard (AES) is one of the most widespread block ciphers nowadays. Therefore, it is naturally an interesting target for further analysis. Tweakable block ciphers augment the usual inputs of a secret key and a public plaintext by an additional public input called tweak. Among various proposals through the previous decade, this thesis identifies Kiasu-BC as a noteworthy attempt to construct a tweakable block cipher that is very close to the AES. Hence, its analysis intertwines closely with that of the AES and illustrates the impact of the tweak on its security best. Moreover, it revisits a generic tweakable block cipher Tweak-and-Tweak (TNT) and its instantiation based on the round-reduced AES. The first part investigates the security of the AES against several forms of differential cryptanalysis, developing distinguishers on four to six (out of ten) rounds of AES. For Kiasu-BC, it exploits the additional freedom in the tweak to develop two forms of differential-based attacks: rectangles and impossible differentials. The results on Kiasu-BC consider an additional round compared to attacks on the (untweaked) AES. The authors of TNT had provided an initial security analysis that still left a gap between provable guarantees and attacks. Our analysis conducts a considerable step towards closing this gap. For TNT-AES - an instantiation of TNT built upon the AES round function - this thesis further shows how to transform our distinguisher into a key-recovery attack. Many applications require the simultaneous authentication and encryption of transmitted data. Authenticated encryption (AE) schemes provide both properties. Modern AE schemes usually demand a unique public input called nonce that must not repeat. Though, this requirement cannot always be guaranteed in practice. As part of a remedy, misuse-resistant and robust AE tries to reduce the impact of occasional misuses. However, robust AE considers not only the potential reuse of nonces. Common authenticated encryption also demanded that the entire ciphertext would have to be buffered until the authentication tag has been successfully verified. In practice, this approach is difficult to ensure since the setting may lack the resources for buffering the messages. Moreover, robustness guarantees in the case of misuse are valuable features. The second part of this thesis proposes three authenticated encryption schemes: RIV, SIV-x, and DCT. RIV is robust against nonce misuse and the release of unverified plaintexts. Both SIV-x and DCT provide high security independent from nonce repetitions. As the core under SIV-x, this thesis revisits the proof of a highly secure parallel MAC, PMAC-x, revises its details, and proposes SIV-x as a highly secure authenticated encryption scheme. Finally, DCT is a generic approach to have n-bit secure deterministic AE but without the need of expanding the ciphertext-tag string by more than n bits more than the plaintext. From its first part, this thesis aims to extend the understanding of the (1) cryptanalysis of round-reduced AES, as well as the understanding of (2) AES-like tweakable block ciphers. From its second part, it demonstrates how to simply extend known approaches for (3) robust nonce-based as well as (4) highly secure deterministic authenticated encryption.}, subject = {Kryptologie}, language = {en} }