@article{Voronin1997, author = {Voronin, V. P.}, title = {Renovation's peculiarities of industrial enterprises in conditions of economic selfsufficiency}, doi = {10.25643/bauhaus-universitaet.529}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5296}, year = {1997}, abstract = {Probleme of recrienfation of building complex, to the sharp increase of share of reconstruction works, capital repair and modernisation of in-dustrial plants are concidered in this work. The conception of develop-ment and creation of unitified system of expluatation and renovation of industrial plants are worded out. This system is based on date-computer technology and taking into conciderations of real economic relations.}, subject = {Bauwerk}, language = {en} } @inproceedings{Weitzmann2003, author = {Weitzmann, R{\"u}diger}, title = {Limit state design of hybrid structures with meshless methods using mathematical optimization}, doi = {10.25643/bauhaus-universitaet.6}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-67}, year = {2003}, abstract = {The revitalization of existing structures belongs to the frequently tasks in urban reconstruction processes. The adaptation for new requirements will commonly affect substantial changes in the general configuration of structures. The resulting revitalized structures are characterized by a hybrid design, where old and new, identical or diverse materials and members will be coupled in different ways. In the planning stage the treatment of these systems leads to application of complex and hybrid mechanical models respectively. High performance numerical instruments have to be applied for solving not only analysis but also targeted design problems. Because of the hybrid character of mechanical models in revitalization planning processes the use of hybrid technologies is advantageous. In this paper mixed domain technique will be used for connecting EFG and FE. The models derived will be adopted for design purposes of non-linear loaded hybrid structures. The investigations show a good adaptability of the meshless methods to the design of hybrid structures by using optimization strategies. With this method the advantages of both finite element and meshless methods can be utilized most suitable. With the property of a minimum amount of unknowns by maintaining an adequate quality of the results the application of mixed finite element and meshless methods is a promising alternative to traditional methods in structural analysis and optimization.}, subject = {Geb{\"a}ude}, language = {de} }