@inproceedings{Sotskov2003, author = {Sotskov, Yuri N.}, title = {Stability of an optimal schedule for a flow-shop problem with two jobs}, doi = {10.25643/bauhaus-universitaet.369}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3690}, year = {2003}, abstract = {The problem F|n=2|F is to minimize the given objective function F(C1,m, C2,m) of completion times Ci,m of two jobs i {\^I} J={1, 2} processed on m machines M={1, 2, …, m}. Both jobs have the same technological route through m machines. Processing time ti,k of job i{\^I} J on machine k{\^I} M is known. Operation preemptions are not allowed. Let R2m be space of non-negative 2m-dimensional real vectors t=(t1,1,…, t1,m, t2,1,…, t2,m) with Chebyshev's distance d(t, t*). To solve problem F|n=2|F, we can use the geometric algorithm, which includes the following steps: 1) construct digraph (V, A) for problem F|n=2|F and find so-called border vertices in (V, A); 2) construct the set of trajectories corresponding to the shortest paths Rt in digraph (V, A) from the origin vertex to each of the border vertices; 3) find an optimal path in the set Rt that represents a schedule with minimal value of the objective function F. Let path tu {\^I} Rt be optimal for the problem F|n=2|F with operation processing times defined by vector t. If for any small positive real number e > 0 there exists vector t*{\^I} R2m such that d(t, t*) = e and path tu is not optimal for the problem F|n=2|F with operation processing times defined by vector t*, then optimality of path tu is not stable. The main result of the paper is the proof of necessary and sufficient conditions for optimality stability of path tu. If objective function F is continuous non-decreasing (e.g., makespan, total completion time, maximal lateness or total tardiness), then to test whether optimality of the path tu {\^I} Rt is stable takes O(m log m) time.}, subject = {Ablaufplanung}, language = {en} } @inproceedings{Phirsof2000, author = {Phirsof, Alexander}, title = {Research of special models describing technological processes}, doi = {10.25643/bauhaus-universitaet.607}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6072}, year = {2000}, abstract = {The technological processes, schedules, parallel algorithms, etc., having some technological limitations and exacting increases of efficiency of their execution can be described through digraphs, on which the appropriate optimization problem (construction of optimal scheduling of tops of digraph) can be solved. The problems, researched in the given operation, have a generally following statement: The problem 1: Under the given graph G and option value h to construct parallel scheduling of tops of digraph of minimum length. Let's designate the problem S(G, h, l). The problem 2: Under the given graph G and option value l to construct parallel scheduling of tops of digraph of minimum width. Let's designate the problem S(G, l, h). The problem 3: Under the given graph G, option value h and periods of execution of operations di, i=1, …, n to construct parallel scheduling of tops of digraph of minimum length. Let's designate the problem S(G, h, di, l). The problems 1,2,3 in a case when h-arbitrary have exponential complexity. In operation the method of solution of the problem S(T, h, di, l) is offered on the basis of choice of tops having greatest weight. The approach to solution of the problem S(G, 3, l) is offered, where G the graph satisfying property : S[i] =S [i], i=1, …, l. For obtaining a rating of width of scheduling on an available estimator of length, we offer to use iterative algorithm of polynomial complexity, on which each step the current value of width of scheduling is set, which is used for specification of length of scheduling.}, subject = {Ablaufplanung}, language = {en} } @article{Neumann1997, author = {Neumann, K.}, title = {Heuristics and applications for Ressource-Constrained Project Scheduling with Minimal and Maximal Time Lags}, doi = {10.25643/bauhaus-universitaet.518}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5186}, year = {1997}, abstract = {Priority-rule methods for approximately minimizing the duration of a project subject to minimal and maximal time lags between the activities of the project and limited availability of renewable resources are considered. Such a project can be modelled by a cyclic activity-on-node network. Two generation schemes for constructing feasible schedules are discussed: the serial and parallel schemes. Two different kinds of heuristic procedures are proposed. The sequential or direct method processes the activities or respectively nodes of the project network one after another without considering the strong components separately. The contraction method uses a bottom-up technique. First, a feasible subschedule is determined for each strong component. Second, each strong component is replaced by a single node and the resulting acyclic network is treated by the direct method. In conclusion, some results from an experimental performance analysis of the heuristics are given using a new network generator.}, subject = {Ablaufplanung}, language = {en} } @misc{Klima2011, type = {Master Thesis}, author = {Klima, Sebastian}, title = {Anwendungsm{\"o}glichkeiten der Werkzeuge der Lean Construction in der Ablaufplanung im Fassadenbau}, doi = {10.25643/bauhaus-universitaet.1457}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20110816-15531}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2011}, abstract = {Trotz Mechanisierung und Vorfertigung ist die Bauproduktion stark handwerklich gepr{\"a}gt. Zu dem sind Baustellen in der Regel komplexe und einmalige Produktionsst{\"a}tten f{\"u}r Einzelobjekte. Sie sind h{\"a}ufig witterungsabh{\"a}ngig, was die Planbarkeit des Herstellungsprozesses beeintr{\"a}chtigt. Zu dem unterscheiden sich die jeweiligen {\"o}rtlichen Bedingungen stark voneinander. St{\"a}ndig wechselndes Personal und Nachunternehmer aus verschiedenen L{\"a}ndern mit unter-schiedlichen Erfahrungen und Qualifikationen sowie andere Ger{\"a}te, Herstellungsmethoden und Baustoffe stellen sehr komplexe Anforderungen an die Baubeteiligten. Außerdem gelten in Deutschland hohe Qualit{\"a}tsanforderungen und komplizierte Vorschriften, die den Aufwand f{\"u}r die Bauleitung deutlich erh{\"o}hen. Die Bauindustrie hat sich aus der Kombination verschiedener Berufe entwickelt und leidet deshalb bis heute unter einer arbeitsteiligen Gliederung. Dies hat zur Folge, dass gegenw{\"a}rtige Ressourcen nur mangelhaft ausgenutzt werden. Besonders bei den Schnittstellen zwischen den einzelnen Gewerken besteht enormes Potential, da die Abl{\"a}ufe und {\"U}berg{\"a}nge zwischen den einzelnen Gewerken meist nicht richtig funktionieren. Hinzu kommen Lieferprobleme sowie zum Teil gegens{\"a}tzliche Ziele der am Bau Beteiligten, welche die Arbeit erschweren und das Resultat beeintr{\"a}chtigen. Dies hat zur Folge, dass die tats{\"a}chliche, produktive Arbeitsleistung im Verh{\"a}ltnis zur gesamten Arbeitszeit zu gering ausf{\"a}llt. Seit Mitte der neunziger Jahre versuchen, vor allem amerikanische Bauingenieure und Ma-nagementfachleute, wissenschaftlich einzelne Gestaltungsprinzipien und Methoden der Lean Production (LP) aus der station{\"a}ren Industrie auf das Bauwesen zu {\"u}bertragen und bran-chenspezifisch weiterzuentwickeln. Dabei werden haupts{\"a}chlich Werkzeuge und Methoden des Toyota Produktionssystems (TPS) und der LP verwendet um eine Steigerung der Produktivit{\"a}t und Stabilisierung der Bauabl{\"a}ufe zu erreichen. Dieser Managementansatz zur Gestaltung der Baustellenproduktion wird als Lean Construction (LC) bezeichnet.}, subject = {Ablaufplanung}, language = {de} }