@inproceedings{WasserfuhrScherer1997, author = {Wasserfuhr, R. and Scherer, Raimar J.}, title = {Information Management in the Concurrent Design Process}, doi = {10.25643/bauhaus-universitaet.445}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4456}, year = {1997}, abstract = {Former achievements for integrated information management have concentrated on interoperability of applications like e.g. CAD, structural analysis or facility management, based on product models introducing additional application independent model layers (core models). In the last years it has become clear, that besides interoperability of autonomous applications, the concurrent processes of model instantiation and evolution have to be modeled, including the relationship to available project resources, persons, legal requirements and communication infrastructure. This paper discusses some basic concepts for an emerging methodology relating the fields of product modeling, project management and workflow systems by elaborating the concept of a process model, which gives a decomposition of the project goals into executable activities. Integrated information management systems should be related to process models to detect pending activities, deadlocks and alternatives of execution. According to the heterogeneous nature of project communication processes, a method for dynamic classification of ad-hoc activities is suggested, that complements predefined highlevel process definitions. In a brief outline of the system architecture, we show how sophisticated information management systems can be broadly made available by using conventional Internet technologies.}, subject = {Informationsmanagement}, language = {en} } @inproceedings{SchapkeScherer2004, author = {Schapke, Sven-Eric and Scherer, Raimar J.}, title = {A Four Layer Bayesian Network for Product Model Based Information Mining}, doi = {10.25643/bauhaus-universitaet.120}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1207}, year = {2004}, abstract = {Business and engineering knowledge in AEC/FM is captured mainly implicitly in project and corporate document repositories. Even with the increasing integration of model-based systems with project information spaces, a large percentage of the information exchange will further on rely on isolated and rather poorly structured text documents. In this paper we propose an approach enabling the use of product model data as a primary source of engineering knowledge to support information externalisation from relevant construction documents, to provide for domain-specific information retrieval, and to help in re-organising and re-contextualising documents in accordance to the user's discipline-specific tasks and information needs. Suggested is a retrieval and mining framework combining methods for analysing text documents, filtering product models and reasoning on Bayesian networks to explicitly represent the content of text repositories in personalisable semantic content networks. We describe the proposed basic network that can be realised on short-term using minimal product model information as well as various extensions towards a full-fledged added value integration of document-based and model-based information.}, subject = {Bauwerk}, language = {en} }